Development of the small EUV imaging device

PHOENIX for the EQUULEUS mission

M. Kuwabara¹, K. Yoshioka¹, G. Murakami², and I. Yoshikawa¹
¹The University of Tokyo, ²ISAS

EQUULEUS/PHOENIX

The nano-spacecraft mission EQUULEUS (6U) as one of the 12 “secondary payloads” of Space Launch System (by NASA) which will be launched in Sep. 2018 is now under development. EQUULEUS will fly to a libration orbit around the Earth-Moon L2 point. The EUV telescope which is named PHOENIX will be boarded on the nano-spacecraft to observe the Earth’s plasmasphere. [EQUULEUS size: 10 x 20 x 30 cm]

PHOENIX objectives

By flying far from the Earth, the entire image of plasmasphere can be obtained. The image from the equatorial plane helps us to understand the dynamics of plasmas along the magnetic field. The behavior of plasmas which is related to the solar activity is key for understanding the physics and evolution of the Earth’s environment.

PHOENIX design

PHOENIX consists of an entrance mirror (φ55mm), metallic thin filter, photon counting detector, and electronics. The mirror is optimized for the emission line of He⁺ (λ=30.4 nm). The lights from another sources (HI 121.6nm, OI 83.4nm, HeI 58.4nm and etc.) are eliminated by metallic thin filter. The quantum efficiency which is higher at 30.4 nm than longer ones also select the wavelength. The design concept is almost identical to the UPI/TEX on KAGUYA (2007), and IMAP/EUVI on ISS (2012).

Mg/SiC multilayer coated mirror

- Mg/SiC mirror has the fairly high reflectivity of 35% at the wavelength of 30.4 nm.
- No aging degradation of the high reflectivity of the mirror was found.

Other parts of PHOENIX

- Detector (MCP + RAE)
 - MCP
 - Diameter: φ14.5 mm
 - Spherical surface
 - Curvature : 210 mm
 - Input voltage: 3.0 kV
 - RAE
 - Triangle shape
 - Metallic thin filter
 - Affective area: φ20.5 mm
 - Material (Thickness)
 - Film: C/Al/C (15/160/15 nm)
 - Holder: SUS304 (2 mm)
- Mechanical shutter
 - Iris diaphragm
 - Material
 - Plates: PEEK
 - Holder: Al

PHOENIX status

- The shutter mechanism (sun shield) is now under development ...
- EM will be integrated until April 2017.
- FM will be integrated until August 2017.
- EQUULEUS will be sent for NASA summer in 2018.