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Ion loss to space has played an important role in atmospheric escape and climate change on
Mars because of intense solar activity during a younger, more active phase of the Sun.
Although the existence of an intrinsic magnetic field on ancient Mars is also a key factor in ion
loss, its effect remains unclear. Based on multispecies magnetohydrodynamics (MHD)
simulations, we investigated ion loss dates and processes from Mars under extreme solar
conditions and the existence of a dipole field with different strengths. The effects of a dipole
field on ion loss depend on whether the dipolar magnetic pressure is strong enough to sustain
the solar wind dynamic pressure. When the dipole field is existent but weak, it facilitates the
cusp outflow and increases the loss rates of molecular ions (O>" and CO;") by a factor of six
through the high-latitude magnetotail. When the dipole field is strong enough, the loss rates of
molecular ions are decreased by two orders of magnitude, and peaks of the escape flux are
located near the equatorial plane due to the magnetic reconnection in the northern-dusk or
southern-dawn lobe regions. The pickup process on the extended oxygen corona created by the
strong EUV flux contributes to the total O" loss. Therefore, the effects of the dipole field are
less pronounced for O". Under more moderate solar EUV conditions, the effects on O loss can
be stronger and thus contribute to climate change.

Direction of the upstream interplanetary magnetic field (IMF) also significantly changes the
magnetospheric configuration, influencing the atmospheric escape mechanism. This paper
moreover investigates effects of IMF on the ion escape mechanism from a Mars-like planet
that has a weak dipole magnetic field directing northward on the equatorial surface. The
northward (parallel to the dipole at subsolar), southward (antiparallel), and Parker-spiral IMFs
under present solar wind conditions are compared based on multispecies MHD simulations. In
the northward IMF case, molecular ions escape from the high-latitude lobe reconnection region,
where ionospheric ions are transported upward along open field lines. Atomic oxygen ions
originating either in the ionosphere or oxygen corona escape through a broader ring-shaped
region. In the southward IMF case, the escape flux of heavy ions increases significantly and has
peaks around the equatorial dawn and dusk flanks. The draped IMF can penetrate into the
subsolar ionosphere by erosion, and the IMF becomes mass-loaded as it is transported through
the dayside ionosphere. The mass-loaded draped IMF is carried to the tail, contributing to ion
escape. The escape channels in the northward and southward IMF cases are different from those
in the Parker-spiral IMF case. The escape rate is the lowest in the northward IMF case and
comparable in the Parker-spiral and southward IMF cases. In the northward IMF case, a weak
intrinsic dipole forms a magnetosphere configuration similar to that of Earth, quenching the
escape rate, while the Parker-spiral and southward IMFs cause reconnection and erosion,
promoting ion escape from the upper atmosphere.
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Escape mechanisms are quite different between unmagnetized and
magnetized planet.

lon escape is important in revealing the atmospheric escape processes,
especially heavy species.
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Dayside: i) the plasmasphere or ii) ring current via cusp, lobe and
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Nightside: iii) the plasma sheet or iv) lobe via cusp
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Dependence on solar wind
dynamic pressure

- Mars: Negligible or inverse
dependence

 Venus: Weak positive
dependence

- Earth: Strong positive
dependence

Based on
Masunaga+ (2019)
Ramstad+ (2018)
Schillings+ (2019)

cape: Solar activity
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Comparison of escape rate in each planet (Ramstad & Barabash, 2021)4
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Aincient Vaiis
Xray & EUV (XUV) environment
Solar activity was higher than the present.
High XUV facilitates the enhancement of ion escape (Jakosky+, 2015;
Lee+, 2018; Dong+, 2018; Terada+, 2009) ...
Atmosphere )
At least 1-bar atmosphere o

Present Mars has only atmosphere
of ~0.007 bar.

— Atmosphere was lost to space?
Based on the isotope ratio

1029;

L, (ergs™)

1028;

[ R | ol | P
1 10 100 1000

Jakosky & Phillips (2001), Age (Myn)
Jakosky+ (2017), Kurokawa+ (2018) XUV fluxes of G-type star over time

(Tu+, 2015)

Leo (erg 3'1)o

1027;— 1 4107



TOHOKU

UNIVERSITY

Magnetie fields at Mairs
- Is/was there a global intrinsic magnetic field on Mars?

Mars Present  Ancient o B e
Magnetic field Crustal Global(?) N N
1
Crustal field map (Connerney+, 2005)
- The existence of crustal B field suggests that ancient Mars had an intrinsic
global B field.

5000 — 100000 nT (e.g., Collinson, 1997; Kirschvink+, 1997)
The dynamo ceased around 4.0 Ga.
« Our question is how the magnetic field affects the ion escape, that is,
generates the climate change.
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Motivatiomn

- What are key parameters for the ion escape?

- Existence of magnetic field & its intensity
- Solar activity

- Solar wind conditions

* Interplanetary magnetic field (IMF)

« The magnetohydrodynamic (MHD) simulations are conducted in order to
investigate the ion escape rates and mechanisms with various above
parameters.

- The effects on climate change are discussed.
« The content of presentation consists of

1. Sakata et al. (2020)

2. Sakai et al. (2018; 2021)
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Model ToNaRy
* A model from Terada+ (2009)
- Based on Tanaka (1998)
+ Total Variation Diminishing (TVD) scheme
+  3-D multispecies & single-fluid MHD
 Horizontal grid: Triangle unstructured grid (4" order)
+ 1922 (on the sphere) x 336 (radial direction)

+ This model can treat from ionosphere to (induced) magnetosphere
seamlessly.

* 11 ion species in the ionosphere including CO,*, O,*, O*, and H".
» Including the chemical and collisional processes




Case 1: Ancient Mars
(Sakata et al., 2020)



Input parameters

Sub-cases 1
Beq [NT] 0 100 3000 5000
(pregéﬁ;/: 1) 100
Ng/w 1000 cm-3
Vg 2000 km/s
BivE 60 nT (Parker-spiral)
Payn ~6700 nPa

Background neutral atmosphere
Based on Kulikov+ (2007)
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Casel: Ancient XUV (XUV = 100) ERESSAet
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+ Tailward fluxes of O,* at x = -2 Ry Tailward flux of O,* (Sakata+, 2020)
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Casel: lon escajpe rates

Molecular ions (OZ+ & COZH Overpressure Non-overpressure

N
©

« Overpressure
Increase by a factor of 6.
* Non-overpressure
Decrease by two orders of magnitude
— Intrinsic magnetic field enhance
the escape from the cusp.
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- Smaller effect of intrinsic magnetic field
compared to molecular ions 23 100 1000 3000 5000
- Mass-loading of enhanced oxygen corona Dol Blathe caquatoral surece T
. . . Escape rate depending on B field
by hlgh XUV irradiance (Sakata+, 2020)

The ratio of Pg to Py, is a key factor to determine the ion escape rate. i



Case 2: Present Mars (Mars-like)
Sakai et al. (2018; 2021)



Case2: Present XU\

* Input parameters

Sub-cases 1
Beq [NT] 100 0

Fxuv 1

(present = 1)
N/ 3cm3
Vs 400 km/s
Bive 2nT

Direction of  Northward Southward Parker-
Bive (Parallel) (Antiparallel) spiral
Payn 0.8 nPa

- Background neutral atmosphere
Based on Terada+ (2009)
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Case2: Present XUV TOHOKU

M t h Magnetic field lines in each IMF case
agnetospnere (Sakai+, 2021)

Northward IMF Parker-spiral IMF Southward IMF

N-IMF: A weak intrinsic magnetic field forms a magnetosphere similar to
Earth.
S-IMF: Intrinsic field lines stripped off by the IMF erosion




Case2: Present XUV TOHOKU

Tailward flux of heavy ions for dipole case atx = -28 R : Iogml([m'2 s'1])
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Case2: lon escape rates

Escape rate of heavy ions at x = -28 RM
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* Northward IMF could protect the atmosphere. (Sakai+, 2021) 4
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Sumimary & Takeaways
Investigated the effects of intrinsic magnetic field, solar wind condition, and IMF
orientation on the ion escape using a multispecies MHD model.

- The ratio of Pg to Py, is a key factor to determine the ion escape rate.
lon escape rate tends to increase in the overpressure state, but to
decrease in the non-overpressure state.
The intrinsic B fields enhance the escape through the cusp.
* The parallel IMF could protect the atmosphere, while the parker-spiral and
antiparallel IMF tend to strip off the atmosphere.

. Overpressure(—y/ Non-
lon escape rate highly depends on the B manrco ; overpressure
ass-loading
intensity, Pq,n, and IMF orientation, [ e %
leading to figure out the climate change of 527 7*7»soms | #/
B S DHE . %

ancient Mars. I > il EARIBOBE
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