木星衛星イオからの大気・内部物質散逸

名古屋大学環境学研究科(学振 PD) 古賀亮一

SO₂を主成分としたイオの希薄な大気((1-10)×10⁻⁹ bar)は、高温火口から直接噴出と、表面 に堆積した SO₂の霜が太陽光の加熱による昇華によって生成する。SO₂は電子衝突や太陽 光によって O,S 原子に解離し、イオ重力圏から脱出し、最終的に磁気圏でイオン化する。 このイオンはイオや他の衛星の地表や大気と衝突し、化学反応を起こす。従って、イオの 地表面や大気、イオ軌道周辺の原子・イオンを多波長で観測することは、イオ大気の生 成・散逸過程、衛星の表層環境や火山活動、及び木星磁気圏への物質供給への理解につな がる。

私たちはこれまでに ALMA のアーカイブデータを解析し、木星の陰にイオが入る (木星蝕)前と後の SO₂ 大気の空間分布や速度分布を明らかにした(Koga et al., 2020, ApJL)。 SO₂の Spectral map からイオの北半球高緯度の西側と赤道周辺の東側で発光強度が大きい ことがわかった。これらの領域では異なる火山ガスの噴火形態を見ることができた。木星 蝕前の北半球高緯度の西側のスペクトル形状は、Main component と Red-shifted component の二つのガウス関数の重ね合わせで説明できた。それらの成分の速度差は~0.6 km/s で、 プルームによって放出されているガス速度の視線方向成分と地表付近からの昇華成分との 差を反映していると解釈できる。また、LTE 状態の仮定の下、大気の回転励起温度を計4 本の SO2 の遷移(Eu/k =31, 164, 168, 220 K)の積分強度から Population diagram (Goldsmith & Langer, 1999)を用いて評価した。北半球高緯度の西側では、木星蝕前と中の観測点に対す るフィッティングの精度は悪く、Eu/k=220Kの点に熱的に非平衡である成分が見られた。 この原因は磁気圏のイオンが外気圏に衝突することによる上層大気の加熱が関係している と考えられる。赤道周辺東側では木星蝕前の大気の回転温度は151±70Kに対し、木星蝕 中は311±41Kに上昇した。また、木星蝕中はすべての遷移の積分強度がフィッティング の信頼区間の範囲に収まり、単一の温度成分で構成されていることがわかった。このこと からイオが陰に入った後、昇華大気は消失し、溶岩起源ガスのみが残されたと考えられ る。ALMAの観測が行われた日時の前後に、ひさき衛星によるイオプラズマトーラスの紫 外線観測(Kita et al., 2019, private communication)、及びナトリウム雲の可視光域の地上観測 (Morgenthaler et al., 2019)が行われ、両者の発光強度の増大が確認された。これらの結果 は、イオの火山噴火とイオプラズマ・中性トーラスの変動が対応している可能性を示唆し ている。

この観測では遷移の数が少ないため、詳細な大気の鉛直分布を得ることができな かった。イオの表層物質・大気の一連の生成・消失過程の理解を進めるために、ALMAの 新規観測プロポーザル提案、及び中間赤外観測と実験室実験を構想中である。

木星衛星イオからの大気・ 内部物質散逸

R. Koga, T. Suzuki, F. Tsuchiya, T. Sakanoi, Y. Hirahara ALMA observation of SO_2 gas originating from Io's volcanic plume and Iava area, ApJL, 2020 まとめ

▶ イオのSO₂大気の分布の電波観測

- ▶ 火山プルームによる速度を持った成分を検出できた
- ▶ 溶岩起源の高温のガスを検出した

古賀亮一

名古屋大学環境学研究科

2 木星衛星イオ大気の生成・散逸

イオから散逸した原子・イオンがほかの衛星大気や表面に影響を及ぼしている

過去のイオSO2大気のサブミリ波観測

SMA observation (Moullet et al., 2010) IRAM/NOEMA observation (Roth et al., 2020)

Map of SO₂ line emission

SO₂, NaClの長期変動

- これらの観測のビームサイズはイオの視直径程度

► SO2の火山噴火ガスの直接検出は困難

4 ALMAを用いたイオSO₂大気観測

Archive data

- project code: 2017.1.00670.S (PI: Patricio Rojo)
- 観測日 2018/3/20
- ・ SO2の火山噴火ガスの直接検出
- 表面温度低下に伴うSO₂の凝縮による大気の 変化をみる

Period	Time	West longitude	Beam size
Before Ingress	10:02 - 10:09	~349°	0.36" × 0.28"
After Ingress	10:54 – 11:01	~355°	0.41" × 0.28"

観測されたSO2遷移のenergy level diagram

- 様々なupper state energyを持つ遷移が観測された
- これらの遷移の確率(lifetime)は比較的近い値であるため、全ての輝線が検出された
- ▶ SO₂ガスの温度の推定が可能となった

SO2輝線強度の分布

Fig. Integrated intensity maps of Io (Positions of volcanoes are referred from Cantrall et al., 2018)

 火山が密集しているRegion 1とRegion 3に注目して、スペクトル プロファイルや温度の評価を出す

スペクトルプロファイル

・ 4本の輝線の内、一番発光 強度が大きい

- Region 1のspectral lineshapeは左右非対称で ある
- 二つのガウス関数の重ね合 わせでフィッティングでき ないか?

 Region 3のspectral lineshapeは左右対称に近い
 ガウスフィットできそう

スペクトルプロファイル

- 二つのガウス関数の重ね合わ せできれいにフィッティング できた
- ほかの三つの遷移のスペクト ルプロファイルも同様に フィッティングできた

スペクトルプロファイルの成因

Region 1 Before ingress 9 $\triangle V$ difference = 0.60 km/s 35 SO₂ 346.652 GHz 30 E_u/k = 168 K 25 £20 Intensity , Red-Main shifted! km/s 5 n km/s -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5∆V (km/s)

- 熱運動が線幅を決めていると仮定 すると、T=600 K (main成分), 190 K (red-shifted成分)と異常に大きい 温度が出てしまう
- > イオ大気は非常に希薄(=10 nbar)
- ガウスフィットの線幅は大気温度 だけでなく、乱流を含む運動の情 報も含んでいる

- 観測された△V difference は先行研究のダストプルームの飛行速度(0.4-0.7 km/s, Spencer et al., 2007)の範囲内
- Region 1のred-shifted成分の成 因はプルームによる視線方向の SO₂ガスの流れである

スペクトルプロファイルの成因

- 気温低下に伴いプルームガ スの凝結のタイムスケール が早まった??
- ▶ この仮説の検証には赤外に よる吸収の観測が必要

Population diagramによる温度の 評価

If SO_2 gas is under LTE condition, the upper state column density per statistical weight (N_u/g_u) can be represented as

11

x-axis; upper state energy (K)

 $\frac{E_u}{k}$

プルームによる上層大気への供給 (Region 1)

12

<mark>よって、</mark>熱的に非平衡なガスが上 <mark>層大気に</mark>存在

Fig. Model calculation of the vertical temperature (Wong and Smyth, 2000)

Fig. The interaction of magnetospheric plasma with lo's atmosphere (Bagenal , 2007)

プルームによる上層大気への供給 (Region 1)

木星蝕後は昇華大気が崩壊するが、 プルームによる直接供給によって 上層大気が維持されていると考え られる 木星蝕前

木星蝕後

14

Region 3のガスの起源

- 観測されたすべての輝線の誤差範 囲内にフィッティングラインが収 まった
- 木星蝕後、Region 3では地表付近
 の単一温度成分が取り出せた
- 木星蝕後の回転温度Trot = 311±41 Kは先行研究のサブミリ波大気観 測結果(130-180 K, Moullet et al., 2008)より明らかに大きい
- この温度はイオの溶岩の温度(ex. ~260±95 K, Williams et al., 2004) に近い
- ▶ 溶岩の噴出に伴って発生したガス であると思われる

ALMA観測時期周辺のIPTとNa雲の変動

か?

16 イオ大気の生成・散逸に関する将来計画

イオは潮汐固定されている

ALMA観測提案予定のイオ 反木星側の面

- イオの気相と固相の両方のSO2のTAO望遠鏡 を用いた中間赤外観測と実験室実験を構想中
- ALMA新規観測プロポーザルを2021年4月下 旬に提出予定
 - イオ大気の鉛直分布と火山の有無の関係性を 理解する
- ▶ ひさき中性トーラスの観測とモデルの比較
 - イオ散逸量・場所と火山噴火の関係性(火口周辺で散逸が卓越している?)

まとめ

- ALMA観測によって、火山活動が活発と思われる、イオの 東側北半球の中緯度と西側赤道周辺で電波強度が強い領域 が見つかった
- 前者では、二つの速度成分を検出され、Red-shiftedな成分 は火山のプルームからの噴出ガスの内視線方向に流れてい るものと考えられる
- 後者では、木星蝕後のSO2の回転励起温度が通常(100-150 K)より高く(311 K)、溶岩起源のガスがあると考えられる
- 表層物質・大気・散逸ガスの一連の生成・消失過程、および火山活動に伴うそれらの変動を理解するには、赤外、サブミリ波、紫外線等の多波長観測が必要である