次世代サンプルリターンミッションの候補天体検討

○嶌生有理⁽¹⁾, 脇田茂⁽²⁾, 浦川聖太郎⁽³⁾, 洪鵬⁽⁴⁾, 臼井文彦⁽¹⁾, 松岡萌⁽¹⁾, 坂谷尚哉⁽⁵⁾, 田中智⁽¹⁾, 長谷川直⁽¹⁾, 黒田大介⁽⁶⁾

⁽¹⁾宇宙航空研究開発機構, ⁽²⁾パデュー大学, ⁽³⁾日本スペースガード協会, ⁽⁴⁾千葉工業大 学惑星探査研究センター, ⁽⁵⁾立教大学, ⁽⁶⁾京都大学

探査機による小天体サンプルリターンは、大気圏突入時に消失してしまう隕石中の脆弱 物質(多孔質物質や揮発性物質)を保持した帰還試料の詳細な地上分析を可能にする。 帰還試料の物質科学は、現在様々に提案されている惑星形成モデルを制約する上で非常 に重要である。さらに、探査機リモセンによるマルチスケールサイエンスや室内実験と の比較など、惑星科学分野の総合的な発展に寄与する。そこで我々は、有志による次世 代サンプルリターン勉強会を毎月開催し、候補天体について検討を進めている。本発表 では、2030年代に小天体サンプルリターンミッションを行うための候補天体案を報告 する。

小天体から試料を地球に帰還させる場合、近日点が地球軌道付近にある天体は復路の設計が容易となるため、燃料節約になる。そこで、JPL小天体データベースから近日点距離が 0.9~1.1au、軌道傾斜角が 10°以下の小天体を候補として抽出し、文献からスペクトル型や活動性等を調査した。帰還試料の科学価値を考慮して、探査候補天体として E型、S型、C/B型、D型小惑星、彗星、活動小惑星、二重/三重小惑星を検討した。サンプルリターンの未踏天体という観点では、E型と彗星が候補天体として有望である。また、各候補天体への軌道設計を行い、いずれの天体でも 2030-31 年打上、2041-45 年帰還という軌道を得た。B型活動小惑星として 107P/(4015) Wilson-Harrington、D型小惑星として 162998 (2001 SK162) が候補に挙げられたが、107P は活動性に、2001 SK162 はスペクトル SN 比とアルベドについて不定性があるため、今後の追観測を検討している。

次世代サンプルリターンミッションの 候補天体検討

*嶌生有理⁽¹⁾, 脇田茂⁽²⁾, 浦川聖太郎⁽³⁾, 洪鵬⁽⁴⁾, 臼井文彦⁽¹⁾, 松岡萌⁽¹⁾, 坂谷尚哉⁽⁵⁾, 田中智⁽¹⁾, 長谷川直⁽¹⁾, 黒田大介⁽⁶⁾

⁽¹⁾宇宙航空研究開発機構, ⁽²⁾パデュー大学, ⁽³⁾日本スペースガード協会, ⁽⁴⁾千葉工業大学惑星探査研究センター, ⁽⁵⁾立教大学, ⁽⁶⁾京都大学

©小惑星サンプルリターン小研究会(1985)

これまでの経緯とNGSR活動実績

- はやぶさ2ヘリテージによる2030年代のサンプルリターン(SR)を考えたい
 - ◆ 2019-12:はや2理工若手雑談会
 - ◆ 2020-02:はやぶさ3(仮)理エブレスト
 - ◆ 2020-06:次世代SR工学MTG
 - ◆ 2020-07:次世代SR (NGSR)の理学雑談検討開始
 - ◆ 2020-09:ISAS惑星探査WS(嶌生、菊地)
 - ◆ 2020-10: NGSR#00:NGSR概要(嶌生)、活動小惑星(脇田)
 - 2020-11:惑星科学会秋季講演会(嶌生)
 - ◆ 2020-11: NGSR#01:小惑星と隕石(洪)
 - ◆ 2020-12: NGSR#02: Wilson-Harrington(W-H)(浦川)
 - ◆ 2021-01: NGSR#03:トロヤ群小惑星(癸生川)
 - ◆ 2021-02: NGSR#04:候補天体検討その1(嶌生)
 - ◆ 2021-02:東北大学惑星圏研究会(瀧川、兵頭、渡邊、黒川、藤谷、阿部、嶌生)
 - ◆ 2020-03:NGSR#05(薮田)

なぜサンプルリターン(SR)なのか?

物質科学による惑星形成論への制約 古典的惑星形成論と巨大惑星移動モデル

隕石/IDPのサンプリングバイアス

マルチスケールでのサイエンス 地上観測、探査機リモセン、その場観測、地上分析

150 Ma 600 kv Walsh+ (2011) Nature

0.4 0.3 0.2

3

どのようにサンプルリターンするか?

- 小惑星サンプルリターンの手順
 - ◆ 小惑星ランデブー
 - ◆ サンプリング
 - ◆ 地球帰還
 - 探査機推力・電力、天体自転速度、
 帰還軌道設計が問題
- SR候補天体の選定
 - ◆ 前提条件:ドライ重量<0.9トンの 化学推進探査機(dV < 2 km/s)
 - 近日点~1 AU、軌道傾斜角<10°
 - 自転速度>(3.5) hrs
 - 2030年代に打上可能
 - SR試料の科学価値
 - リモセン・その場観測の科学価値
 - ◆ SR候補天体を複数選定したい

MMX (JAXA): 3トン探査機に よるPhobosへのSR計画

CERES: Exploration of Ceres' Habitability – (NASA): 4.7トン 探査機によるCeresへのSR計画 (案)

なにをサンプルリターンするか?

- 期待されるSR物質(≒隕石≒ スペクトル型)が重要
 - 小惑星スペクトル型の動径分 布混合:惑星移動による擾乱 の結果? [Demeo & Carry 2014]
 - ◆ E:地球型惑星の構成要素?
 - ◆ S:最頻のNEA
 - ◆ C/B:水質変成と有機物
 - ◆ D:水と有機物、彗星物質?
- MBA→NEAへの軌道進化
 - Yarkovsky効果による動径移 動と惑星摂動(平均運動共鳴 、v₆永年共鳴)による染み出し
- NEAからのSR≒MBAからの SR?

SPS2021 2021/02/17

5

SR探查候補天体(案)

候補天体	隕石/SR試料	重要性	関連探査
E型 (Xe, p _v >0.4)	EC	地球型惑星の構成要素?	BepiColombo
S型	OC Itokawa (<1g)	最頻NEA→惑星防衛	Hayabusa
C/B型	CC Ryugu (5.4g) Bennu (>60g)	水質変成、有機物	Hayabusa2 OSIRIS-REx
D型	Tagish Lake	有機物·水、彗星物質?	MMX OKEANOS Lucy
彗星	IDP Wild2 (<1g)	有機物·水、彗星物質	Rosetta Comet Interceptor CAESAR
活動小惑星		彗星小惑星	Destiny ⁺
二重/三重小惑星		天体衝突史、YORP	DART/Hera

次の中から3つ候補天体を選ぶとしたら、どれですか?(n=25)

第1候補の人気はD型→活動的小惑星→彗星

リファレンスミッションの検討

- 候補天体の探索(理学)
 - ◆ 小天体データベース(JPL SBDB)からNEAを抽出(2020-06時点)
 - ◆ 文献から天体特徴を追加(スペクトル型、バイナリ、活動小惑星等)
 - ◆ 前提条件による制限(0.9 < q < 1.1 au、i < 10°)</p>
 - candidates_reg_v6.xlsx
 - 暫定科学スケールによる評価(未完)
 - >0.3 kmの天体を抽出
- 軌道設計(工学)
 - ◆ 化学推進と惑星スイングバイとによるSR軌道成立性を検討

D型小惑星

- 有機物と水、彗星物質?
 - ◆ 惑星移動でTrojansにTNOs(D型)が 捕獲された [Demeo & Carry 2014]
- 太陽系遠方物質は重い(H,N)同位体 組成 [Marty 2012]
- ◆ 水質変成なし?Trojan/こ3-4µm微吸収 あり(O-H or N-H) [Brown 2016]
- ◆ Tagish Lake, IDPの母天体? [Hiroi+ 2001, Vernazza+ 2015]
- 162998 (2001 SK162)
- 自転周期が非常に遅い
- ◆ スペクトル・アルベドに不定性あり。
 - 追観測@2025-10 (V~19)
- 軌道設計:2031年打上→2042年帰還 (2yrDVEGA: 1290m/s)

パラメータ	値
直径 [km]	0.875 (5) 1.9 (4) ^a
アルベド	0.161 0.03 (+3/-2) ª 0.03–0.177 ^c
自転周期 [hr]	68
公転周期 [yr]	2.67
q [au]	1.011
i [deg]	1.7
スペクトル	T, D ^b

Data are from (JPL SBDB; ^a Mueller+2011; ^b Binzel+2019; ^c Alí-Lagoa, personal communication).

活動小惑星(C/B型)

- ■彗星-小惑星遷移天体
- ◆ 活動的小惑星、メインベルト彗星、枯渇 彗星 [Jewitt+ 2015; Hsieh+2018;]
- 活動性の要因:氷の昇華、自転起因の 分裂、衝突 [Jewitt+ 2017; Hirabayashi+ 2014; Ishiguro+ 2011]
- 107P/ (4015) Wilson-Harrington
- ◆ 1949年のみ彗星活動 [e.g. Ishiguro+ 2011]
 - 活動性の追観測@2022-07 (V~17)
 - 揮発性物質は残存しているか?
 - Akarilこよる3µm含水鉱物吸収測定 は困難 [Bach+ 2017]
 - 軌道力学的な起源: MB外側(65%)
 、JFC(4%) [Bottke+ 2002]
- • 軌道設計:2031年打上→2043年帰還 (EVEEAE: 1410m/s)

值
4.0 (5) 3.46 (32) ^a 3.74–4.39 ^d
0.05 (1) 0.059 (11) ª 0.040–0.055 ^d
3.5736
4.26
CF ^b , B ^c
0.968
2.8

Data are from (JPL SBDB; ^a Licandro+2011; ^c SMASS; ^d Bach+2017, ^b Tholen 1989).

彗星

- 有機物·水、彗星物質
 - ◆ 岩石ダスト、氷、有機物の集合体
 - 67P/C-G
 - 多様な地質(ダスト被覆地域、ピット/ 円形地形、窪地、平坦地、暴露固化 表面)[Thomas+2015]
 - ダスト-氷比4:1 [Pätzold+ 2016]
 - ◆ 低温SRCが必要。CAESARとの競合/ 連携?
 - ◆ 彗星核 P/2016 BA14 (PANSTARRS) はD型スペクトル [SMASS]
 - 46P/Wirtanen
 - 軌道設計:2031年打上→2045年帰還 (EVEEAE: 1822m/s)
- 320P/McNaught
 - ◆ 軌道設計:2030年打上→2042年帰還 (EEAE: 1817m/s)

パラメータ	値
直径 [km]	1.2 1.20 (4) ª 1.11 (8) ^b
アルベド	0.04 ^{a,*} 0.04 ^{a,*}
自転周期 [hr]	6.0 (3) ^a 6–7.5 ^b
公転周期 [yr]	5.44
q [au]	1.055
i [deg]	11.7
スペクトル	

Data are from (JPL SBDB; ^a Lamy+1998; ^b Boehnhardt+2002). *Assumed.

67P/C-G [Thomas+ 2015]

CAESAR (NASA): 67P/C-GへのSR計画

P/2016 BA14 (PANSTARRS) [SMASS]

E(Xe)型小惑星

- 地球型惑星の構成要素?
 - ◆ 惑星移動でHungariansに岩石小惑 星(E型)が捕獲された [Demeo & Carry 2014]
- ◆ ECの起源?ECの同位体組成は月・ 地球に一致 [Dauphas 2017]
- 水星・金星・地球の主構成要素
 [Brasser+ 2017]
- 4660 Nereus (1982 DB)
- 高アルベド天体、EC(aubrite)のアナ ログ [Binzel+ 2004 PSS]
- ◆ 楕円体形状、SC/OC=0.74 (~cm表 面ラフネス) [Brozovic+ 2009]
- 軌道設計:未実施

パラメータ	値
直径 [km]	0.33 0.55x0.33x0.24 ^b
アルベド	0.55
自転周期 [hr]	15.1
公転周期 [yr]	1.82
q [au]	0.952
i [deg]	1.4
スペクトル	Xe ^a

Data are from (JPL SBDB; ^a Binzel+ 2004; ^b Brozovic+ 2009).

三重小惑星(C/B型)

- 天体衝突史、YORP
 - 成因:自転分裂(近くて小さい) or 衝突 破壊(遠くて大きい) [Lindsay+ 2015]
 - <u>複数天体</u>からのSR
 - 153591 (2001 SN263)
 - B型:0.7µm、2.7µm吸収は不明
 - 外衛星は潮汐ロック [Becker+ 2015]
 - 軌道設計:2031年打上→2042年帰還 (2yrDVEGA: 1832m/s)

* Durda et al. (2004) Jacobson and Scheeres (2011h

* Descamps and Marchis (2008) * Pravec and Harris (2007)

[Lindsay+ 2015]

パラメータ	値 (主星)	値 (内衛星)	値 (外衛星)
直径 [km]	2.5 (3) 2 ª	0.77 (12)	0.43 (13)
アルベド	0.048		
自転周期 [hr]	3.4256 (2)	13.43 (1)	16.4 (5)
公転周期	2.8 [yr] ^a	~144 [hr]	16.4 [hr]
密度 [g/cc]	1.1 (2)	1.0 (3)	2.3 (1.3)
q [au]	1.036		
i [deg]	6.7		
スペクトル	B ^b		

Data are from (^a JPL SBDB; Becker+2015; ^b Binzel+2019).

Becker+2015

三重小惑星(S型)

- 天体衝突史·YORP
- 最頻NEA→惑星防衛
 - ◆ SR試料はItokawa微粒子のみ
 - ◆ 宇宙風化の実測
- (136617) 1994 CC
 - ◆ 内衛星は潮汐ロック [Brozovic+ 2011]
 - 軌道設計:未実施

パラメータ	値 (主星)	値 (内衛星)	値 (外衛星)
直径 [km]	0.62 (6)	0.11 (3)	0.08 (3)
アルベド	0.42		
自転周期 [hr]	2.38860 (9)	26 (12)	14 (7)
公転周期	2.10 [yr] ^a	26 [hr]	9 [days]
密度 [g/cc]	2.1 (6)		
q [au]	0.955		
i [deg]	4.7		
スペクトル	S_comp ^b , Sq		

Data are from (Brozovic+ 2011, ^a JPL SBDB; ^b Binzel+ 2019).

ミッション機器(案)

発展したSR探査形態(案)

サンプルリターン以外にしてみたいことは?

サンプルリターン以外にしてみたいことは?観測手法と観測対象の組み合わせを選んでください。

その他に、次世代サンプルリターンでやりたいこと

- 彗星/氷天体/Ceresからのサンプルリターン
- 全てのスペクトル型の小惑星からの試料回収
- 着陸機+投石機で小石を投げ上げ、探査機で捕獲
- MBの極めて赤い小惑星 or 火星軌道内側の長寿命小惑星
- 天体を周回しての内部構造探査
- いろいろな面白い天体:NASAのLucyと似た天体か、日本独自の天体か、M型か
- 熱赤外カメラによる物性探査、レーダによる表層・内部探査
- SRは重要だが、「リターン」なし(その場計測など)も重要
- メインベルトからのサンプルリターン

工学チームの検討状況

- 次世代サンプルリターン探査システムの研究
 - 2020年度ISAS戦略的開発研究経費(代表:佐伯)
 - 活動区分:RG
 - 目的:SRの自在性の向上
 - 検討事項:
 - NEA(W-H、D型)へのリファレンスミッション
 - 親機・子機システム(SR子機)
 - タンデムSCI
 - 発展型TM
 - 2021年度はWGとしての活動を計画

航法カメラ画像 から見たTM

まとめ

- - ◆ SR前提条件:化学推進0.9トン探査機(dV<2 km/s)
 - ◆ SR候補天体:E型,S型,C/B型,D型,彗星,活動小惑星,二重/三重小惑星
 - 複数天体で重要性・軌道設計が評価された
 - どのようにSR優先順位をつけるか?
 - ◆ 発展したSR探査形態:親機・子機システム

■ 今後

- ◆ E型などのSR重要性の勉強会・議論
- ◆ ミッション機器の勉強会・議論
- ◆ 工学チームとの連携