Comet Interceptorによる彗星の水素コマ中の物理過程の解明 鈴木雄大,吉岡和夫¹,益永圭²,河北秀世³,新中善晴³,村上豪²,木村智樹⁴,土屋史紀⁵,山崎敦²,吉川一朗¹ ^{1東京大学,²JAXA/ISAS,³京都産業大学,⁴東京理科大学,⁵東北大学</sub>}

彗星は惑星進化の初期段階の情報を保持しているほか、初期地球への水の 供給源の候補としても重要である。水供給源の指標としてD/H比がしばしば 用いられる。しかし、彗星のD/H比の多様性の要因は分かっておらず、複数 観測手法による同時測定や気体粒子の生成・輸送過程の理解が重要である。

本研究ではComet Interceptor (CI) による初の長周期彗星のフライバイに向けて、 コマ中におけるLy-a線の放射伝達モデルを構築し、構築したモデルを基にCI搭載 Hydrogen Imager (HI) によるD/H比の測定可能性を定量評価した。

その結果、まずひさき衛星で観測された長周期彗星のコマ中のLy-α線の鉛直

分布と整合的な放射伝達モデルの構築に成功した。また、同モデルとCI/HIの光学設計および各光学素子の性能評価実験の結果を組み合わせることにより、観測対象の彗星のコマ中の水素の温度を制約できない場合でも、D/H 比を相対誤差60%以下の精度で制約でき、彗星のD/H比を「地球並みに低い」或いは「67P/Churyumov-Gerasimenko並みに高い」という2段階で判別できることが分かった。さらに、吸収セルを用いて観測的に温度を制約できると、D/H比の推定精度は相対誤差40%以下となり、「地球並みに低い」「67P/CG並みに高い」或いは「地球と67P/CGの中間的」の3段階で判別可能となることが分かった。

背景画像credit: Edu INAF

Comet Interceptorによる 彗星の水素コマ中の物理過程の解明

Focus of the Symposium 2023

Multiple Column x Low approach for Science requirement & Mission strategy

Making borderless teams and finding/investigating seeds for future explorations!

東京大学大学院理学系研究科 地球惑星科学専攻博士3年

吉岡 和夫¹, 益永 圭², 河北 秀世³, 新中 善晴³, 村上 豪², 木村 智樹⁴, 土屋 史紀⁵, 山崎 敦², 吉川 一朗¹ ¹東京大学, ²JAXA/ISAS, ³京都産業大学, ⁴東京理科大学, ⁵東北大学

1.1. 惑星科学における彗星の重要性

- 進化が進んでいない
 - •惑星進化の初期段階の状態が見られる
- •地球への水供給源の候補
 - 67P/Churyumov-Gerasimenkoには 有機物が豊富にあることも分かった
- ・特に、長周期彗星は太陽接近経験が乏しい
 - •初期の揮発性物質分布等の制約
 - 風化していない彗星表層の様子
 - •一般的に活動度が高く、大気(コマ)の観測も比較的容易

今話題のZTF彗星

credit: Edu INAF

1. 彗星の研究意義	2. Comet Interceptor	3. 放射伝達モデル	4. Feasibility Study	5.まとめ
			-	

1.2. 彗星とD/H比

- ・地球に水を供給した天体の判別の指標として
 D/H比がしばしば使われる
 - ・短周期彗星のうち、45P/HMP, 103P/Hartley 2は
 地球 (1.6×10⁻⁴) と近い
 - •67P/CGのD/H比は地球の3倍以上
 - ・長周期彗星は中間的なD/H比

1. 彗星の研究意義	2. Comet Interceptor	3. 放射伝達モデル	4. Feasibility Study	5. まとめ

1.2. 彗星とD/H比

- コマのD/H比と核表面の活動領域の割合 (active fraction)の間に反相関(Lis et al., 2019)
 - ・彗星の形成環境の違いを反映?
 - 遠方で形成 → 低D/H比 かつ 高活動度?
 - 分子雲中での低温ほどD/H比が高くなる傾向に反する
 - •昇華による分別効果?
 - 昇華源によりD/H比が異なる?

→ 異なる手法による同時観測や大気の生成・輸送の素過程の理解が必要

1. 彗星の研究意義	2. Comet Interceptor	3. 放射伝達モデル	4. Feasibility Study	5. まとめ

- 各分子の放出量を彗星同士で比較する際、
 活動度で規格化するためにH,O放出量との比をとる
 - 日心距離 < 3 auではH₂O分子が卓越

1.3. 彗星の水放出率

- SOHO/SWANによるLy-a線の観測が多い
 - ・水素原子の分布 × モデル (e.g., Mäkinen & Combi, 2005)
 → 水放出率の推定
- ・観測機器によって推定値が数倍異なることも (e.g., Combi et al., 2020; Suzuki et al., under review)
 ・速度・温度・光解離寿命等のパラメータの制約が必要

2.1. Comet Interceptor (CI) ミッション

- ・2029年打ち上げ予定
- 長周期彗星 (or 恒星間天体) への初のフライバイ • 打ち上げ後にターゲットを決定
- L2 Waiting Phase: ラグランジュ点 (SEL2) で<mark>待機</mark> Approach Phase: 彗星に向かって<mark>航行</mark> Comet Fly-by Phase: **フライバイ**1回
- •親機 (A: ESA主導) から 子機2機 (B1: JAXA主導, B2: ESA主導) を分離

2.2. Comet Interceptor (CI)の搭載機器

搭載箇所	通称	フルネーム	観測方法	主な観測対象	
	CoCa	COmet CAmera	可視光	核、内部コマ	
Spacecraft	MIRMIS	Modular InfraRed Molecules and Ices Sensor	赤外線	核、コマ	
A	MANiaC	Mass Analyzer for Neutrals in a Coma	質量分析	コマ (中性ガス)	関連ホスター
	DFP-A	Dust, Fields, and Plasma		電磁場、プラズマ、ダスト	王本· P-35 笠原さん
	HI	Hydrongen Imager	紫外線	コマ (水素)	PS:
Probe	PS	Plasma Suite	質量分析	プラズマ、磁場	P-32田尾さん P-24 Sofia さん
B1	NAC, WAC	Narrow Angle Camera, Wide Angle Camera	可視光	核、コマ	P-36 吉田さん
	ENVisS	Entire Visible Sky	可視光	ダスト	
Probe	OPIC	Optical Periscope for Comets	可視光	核、コマ、ダスト	
B2	DFP-B2	Dust, Fields, and Plasma		電磁場、プラズマ、ダスト	

2.2. Comet Interceptor (CI)の搭載機器

搭載箇所	通称	フルネーム	観測方法	主な観測対象	
	CoCa	COmet CAmera	可視光	核、内部コマ	
Spacecraft	MIRMIS	Modular InfraRed Molecules and Ices Sensor	赤外線	核、コマ	
A	MANiaC	Mass Analyzer for Neutrals in a Coma	質量分析	コマ (中性ガス)	関連ホスター
	DFP-A	Dust, Fields, and Plasma		電磁場、プラズマ、ダスト	王卒· P-35 笠原さん
			the tit with		
	HI	Hydrongen Imager	紫外緑	コマ (水素)	PS:
Probe	HI PS	Hydrongen ImagerPlasma Suite	紫外線 質量分析	コマ (水素) プラズマ、磁場	PS: P-32田尾さん P-24 Sofia さん
Probe B1	HI PS NAC, WAC	Hydrongen Imager Plasma Suite Narrow Angle Camera, Wide Angle Camera	紫外線 質量分析 可視光	コマ (水素) プラズマ、磁場 核、コマ	PS: P-32田尾さん P-34 Sofiaさん P-36 吉田さん
Probe B1	HI PS NAC, WAC ENVisS	Hydrongen Imager Plasma Suite Narrow Angle Camera, Wide Angle Camera Entire Visible Sky	紫外線 質量分析 可視光 可視光	コマ (水素) プラズマ、磁場 核、コマ ダスト	PS: P-32田尾さん P-34 Sofiaさん P-36 吉田さん
Probe Probe	HI PS NAC, WAC ENVisS OPIC	Hydrongen Imager Plasma Suite Narrow Angle Camera, Wide Angle Camera Entire Visible Sky Optical Periscope for Comets	紫外線 質量分析 可視光 可視光 可視光	コマ (水素) プラズマ、磁場 核、コマ ダスト 核、コマ、ダスト	PS: P-32田尾さん P-34 Sofiaさん P-36 吉田さん

- ・現在EM品の製作中
- Approach Phase中はLy-α線放射輝度分布の2次元分布を撮像 (imaging mode)
 バンドパスフィルターを用いたフィルター分光 (120±7 nm程度の1バンド)

2.3. Hydrogen Imager (HI)

- Comet Fly-by Phase中は空間分解能を犠牲に
 データを軽くし、代わりに時間分解能を上げる (light curve mode)
- ・吸収セルを用いて水素と重水素のLy-α線を 分離して観測 → D/H比の推定
 - H, DではLy-a線の輝線波長が33 pmだけ異なる (121.567 nm / 121.534 nm)
 - Approach Phase中も、彗星のCIに対する視線速度が 小さいときに積極的に活用予定
 - → 水素の温度やD/H比を推定可能

2.4. Hydrogen Imager (HI)の科学目標

- •活動度の変動のモニター
- ・コマ中での水素原子(&気体粒子一般)の物理過程の解明
- その場光観測・粒子計測・地上観測による D/H比の測定結果の比較

~本発表(博士論文の一部)~
 ひさき衛星の観測データの解析
 → Ly-a線の放射伝達モデルの構築
 → CI/HIのfeasibility study

1. 彗星の研究意義

3.1. ひさき衛星で得られたLy-α放射輝度分布

- 高度5×104 km以下で放射輝度
 - 数値計算 (e.g., Tenishev et al., 2008) では見られない傾向
- 可能性のある要因
 - ・空間分解能の低さ → 折れ曲がりの高度が合わない
 - ・原子間衝突 → 過去の数値計算例では見られない傾向
 - ・ダスト吸収 → 折れ曲がりが生じるとしても低高度?
 モデル化が困難
 - •水素原子による多重散乱・自己吸収
 - → 先行研究はスペクトルの形状に対する影響のみ

credit: JAXA

• 定常に至るまで計算(~10日)

1. 彗星の研究意義	2. Comet Interceptor	3. 放射伝達モデル	4. Feasibility Study	5.まとめ
3.4. 計算結果と観測データの比較				

- ・放射輝度分布が10⁵km以下で大きく湾曲(赤線)
 - •水放出率は単純な解析解を用いて求めた値 (Suzuki et al., under review) を利用
 - ・ひさき衛星の観測結果(黒点)と一致
 - C/2015 ER₆₁のみ整合性が向上せず → アウトバーストの影響? (生成領域の上昇・ダスト減光)

1. 彗星の研究意義	2. Comet Interceptor	3. 放射伝達モデル	4. Feasibility Study	5. まとめ	
3.5. Ly-α線の放射輝度分布の計算 – 示唆					

- ・水素原子の柱密度 = 5×10²² /km²付近から多重散乱効果の考慮が必要
 - 10²⁴ /km² を超えると実効的なg-factor (≒Ly-α線放射輝度と水素原子の柱密度の比例係数) が 1/10以下に低下
 - ・水放出率が10²⁹/sの場合、高度約10⁵km以下では多重散乱の考慮が必要

Comet Interceptorによる彗星の水素コマ中の物理過程の解明(鈴木雄大)

 1. 彗星の研究意義
 2. Comet Interceptor
 3. 放射伝達モデル
 4. Feasibility Study
 5. まとめ

3.5. Ly-α線の放射輝度分布の計算 – 示唆

- ・核に近づくほど、見かけのD/H比が増加
 - ・水素と重水素のLy-α線の波長は33 pm異なる
 - D/H比 < 10⁻³のため、重水素のLy-α線は光学的に薄い
 - → 核に近づくほど、水素のLy-a線のみが 多重散乱・自己吸収によって減光される

- •多重散乱を考慮した数値モデルでひさき衛星の観測データを再現
- ・水素の柱密度が5×10²²/km²を超えると多重散乱の考慮が必要
- ・核に近づくほど見かけのD/H比が増加

これまでに測定された彗星のD/H比は(1.6-5.3)×10-4

→ 相対誤差30%以下で測定できれば、地球程度・67P/CG程度・中間的の3段階で判別可能 60%以下で測定できれば、地球程度・67P/CG程度の2段階で判別可能

1. 彗星の研究意義	2. Comet Interceptor	3. 放射伝達モデル	4. Feasibility Study	5.まとめ
	-			

4.2. 吸収セルの原理

- 重水素分子 (or 水素分子) で満たされたガラスセル
- ・中に設置されたフィラメントに電圧を印加すると **重水素** (or 水素) のLy-α線のみを選択的に吸収 ・on/off 切り替え可能なバンドストップフィルター
- •小型ながら非常に高い波長分解能を実現可能

1. 彗星の研究意義	2. Comet Interceptor	3. 放射伝達モデル	4. Feasibility Study	5.まとめ

4.2. 吸収セルの原理

- ・重水素分子 (or 水素分子) で満たされたガラスセル
- ・中に設置されたフィラメントに電圧を印加すると **重水素** (or 水素) のLy-α線のみを選択的に吸収 ・on/off 切り替え可能なバンドストップフィルター
- •小型ながら非常に高い波長分解能を実現可能

1. 彗星の研究意義	2. Comet Interceptor	3. 放射伝達モデル	4. Feasibility Study	5.まとめ
4.3. 模擬観測	データの作成			

- Comet Fly-by Phase時の観測を想定してLy-α線の放射輝度を計算
 - 先ほどの
 か
 か
 射
 伝達
 モデル
 を応用
 - ・光学的に厚い領域で水素のLy-α線が減光
 - •ひさき衛星の"外"からの観測と異なり、低高度では光学的に厚い領域を通った光のみが到達

1. 彗星の研究意義	2. Comet Interceptor	3. 放射伝達モデル	4. Feasibility Study	5.まとめ
4.3. 模擬観測	データの作成			

- 実験と計算で評価した有効面積を用いて、放射輝度を光子カウントに変換
 - •彗星の水素・重水素の明るさ、星間水素の明るさ、ダークノイズ、放射線ノイズを考慮
- ・水素セルは常時on、重水素セルは2秒ごとにon/offを切り替えると仮定
- ショットノイズに起因するデータのバラつきを考慮

Comet Interceptorによる彗星の水素コマ中の物理過程の解明(鈴木雄大)

 1. 彗星の研究意義
 2. Comet Interceptor
 3. 放射伝達モデル
 4. Feasibility Study
 5. まとめ

4.5. 水素の数密度の推定精度

- ・先ほどの放射伝達モデルを利用して、HIの視線に 沿った水素原子の柱密度とLy-α線の放射輝度の 関係を計算
 - •水放出率10²⁷-10³¹/s,水素温度7,000±2,000 Kの結果を平均
- ・水素の柱密度の推定精度は相対誤差40-60%程度
 - D/H比が地球と67P/CGのどちらに近いか判別可能
- •水素の温度の制約が最も重要
 - •水素セルを用いた観測、衝突を考慮した数値計算の必要性
 - 例えば、7,000±1,000 Kまで制約できれば相対誤差を30-40%まで抑えられる

1. 彗星の研究意義	2. Comet Interceptor	3. 放射伝達モデル	4. Feasibility Study	5. まとめ		
5. まとめ ~ HIによるD/H比の測定可能性の検証						

- Comet Interceptor: 2029年打ち上げ、初の長周期彗星フライバイミッション
- Hydrogen Imager: Ly-α線観測、活動度のモニターやD/H比の測定など

- ひさき衛星の観測データを再現する放射伝達モデルを構築
- ・ガスフィルターのBBMを用いた光学試験により吸収特性を評価(本発表では省略)
- 多くの彗星で重水素を検出可能

- ・相対誤差60%以下でD/H比を算出可能
 - ・地球程度・67P/CG程度の2段階で判別可能
 - ・観測或いは数値計算により温度を制約できれば、地球程度・67P/CG程度・中間的の3段階に