The climate evolution of early Mars
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Fig. Timeline of Martian geologic history based on Wordsworth (2016).  Fig. Global map of the major terrain types (Wordsworth, 2016).

B Noachian (~3.7-4.1Ga), when alteration of the Martian surface by water was
greatest. The vast majority of Noachian terrains is found in the heavily cratered

Globally warm and wet ? Globally cold and dry southern hemisphere. 3.8-3.6 Ga : Late Noachian & Early Hesperian

Pressure 1 bar < P;<2bar ? P, ~ 6.1 mbar B Hesperian (~3.0-3.7Ga), which includes widespread volcanism and catastrophic
Temperature T.>273K? T.~215K flooding suf:h as outflow channels. The northern lowlands are dominated by
smooth plains that probably due to lava outflow.

The causes of this dramatic climate evolution are still uncertain. B Amazonian (~0-3.0 Ga), which is characterized by extremely dry, oxidized
surface conditions and minimal weathering. 4




Valley network formation (@) Cenatmentc Goopliaice Early Mars climate scenarios (@) Sepaitwent of Goopysice

B VNs are the major morphological evidence of the ancient water activity on Mars ‘Warm early Mars — rain-fed rivers
that have been predominantly observed on the southern highlands. B Global average surface temperatures were above 273 K and rainfall eroded the
B VNs were formed within 104 — 106 years (Moore and Howard, 2005). landscape due to greenhouse warming effects (Kamada et al., 2020, 2021).

B There are two opposite scenarios for VN formation:

Cool early Mars — subglacial meltwater channels

O sre formed by rain-fed river : | € rs) B Global average surface temperatures were much below 273 K and snow/ice on
southern highland temporarily melted to carve valley networks due to sudden
volcanism or impact events (Wordsworth et al., 2013,2017).

O VNs were formed by subglacial meltwater channels  (cool early Mars)

[Warm early Mars] [Cool early Mars])

ﬁ <>
. // rainfall

Fig. Fluvial landscapes on Earth and Mars Fig. Fluvial landscapes on Earth and Mars (Galofre et al., 2020)
Fig. Schematic diagrams of warm early Mars and cool early Mars.
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B Our objective is to answer the following questions: B Kurokawa et al. (2018) analyzed N and Ar isotopic components in ALH 84001,

] What is the best climas o f Iv Mars t te VNs? and showed that Mars had a dense atmosphere higher than 0.5 bar at 4 Ga.
at is the best climate scenario for early Mars to create VNs?

B Kite et al. (2014) compared the size distribution of craters with models describing
the atmospheric filtering of impactors, which indicated an upper limit of 1-2 bar
O Does time-scale to create VN's agree with the previous studies? for the early Martian atmosphere at ~3.6 Ga.

[ Does runoff from river model agree with VNs observed?

B Early Martian atmosphere might have possessed small amounts of greenhouse
3 VA S # T R g =% gases such as H,/CH, from meteorite impacts.
) Cool early Mars 4
gty e & W ¢ B However, CH, is photolyzed within a few hundred years (Johnson et al., 2009).

a4 = ! CO+H,0 »CO, +H,

Fig. This image shows ancient Mars capable of supporting liquid Fig. This is an altered image taken on Earth, and modified to reflect
water on its surface. (ONASA Goddard Conceptual Image Lab) findings from the rover mission. (©NASA/JPL-Caltech) 10 100

7 Fig. Paleo-atmospheric pressure (Kite et al., 2014). Fig. The basic mechanism of reduced gas production
following an impact event (Haberle et al., 2019).
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Method - Early Mars ocean () 2oportment el Goopliysics Method - modeling descriptions () 2one iment St Ceoniyaizs
Di Achille and Hynek (2010) proposed a ocean with a volume of 550 m GEL. B We performed global climate, river and ice sheet coupling simulations using the

Various geologic contacts in the northern plains resemble ancient shorelines EMECM,CRIS and ALICE (emadmetad, 20205200 L2002

(Head et al. 1999), suggesting the ancient northern ocean. B We assumed CO,, H,O and H, mixing early Mars atmosphere with CO,

B Putative shorelines show vertical variations of ~km, which disagree with a fluid AUTIOSPRETe DEtWEEN -2 biar, Al (A8 EiXng Tatio: hetweEm 0-5-

in hydrostatic equilibrium, although it has been argued that true polar wander B We implemented early topography before TPW (Bouley et al., 2016) with initial
(TPW) could have caused surface deformation (Perron et al., 2007). ocean and lakes with sea level below -2.3 km (Citron et al., 2018).

B The Tharsis rise during the late Noachian and early Hesperian has induced a
reorientation of the planet with respect to its spin axis (Bouley et al., 2016).

Table. Modeling description of global climate, river and ice sheet model

Dynamical Core CCSR/NIES/FRCGC MIROC
Pu s h hn h 1 b d f 1 2 2 3 km 3 Spatial resolution 64x32x15 (up to ~60km)
tative shorelines lie along a boundary of near constant elevation (—2. ) in
. . . Surface pressure 1/1.25/1.5/1.75/2 bar
the age of before Tharsis formation (Citron et al., 2018). :
Atmospheric component CO,/H,0/H, (0/1/2/3/4/5/6/8%)
0 a Earty Noachian b Late Noachian/Early Hesperian € Late Hesparian/Amazonian
sz S:,'::‘:,Tf;‘x,’m‘?z 19 Radiation atmosphere and CO,/H,0 clouds
Solar flux 441.1 W/m?
Orbital eccentricity 0 (circler orbit)
Obliquity 40°
Gravitational acceleration 3.71 m/s?
: L - Fig. Topography before TPW with lowland ocean/lakes Geothermal heat flux 55 mW/m?
Distance along shoreline (kim)
Fig. Comparison of Arabia shoreline topography to Fig. Scenario for a TPW driven by a late growth of Tharsis 9 10
shoreline deformation models (Citron et al., 2018). contemporaneous with valley network incision (Bouley et al., 2016).

Method - time integration scheme () Sefariment of Ceophysics Results - surface temperature e e
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B We implemented an iteration scheme to compute long-term steady states of the
atmosphere and hydrosphere over 105 Mars years.

B We iterated the runs of the ALICE and PMGCM-CRIS coupled model with the B With higher surface pressures and H, mixing ratio, surface temperature in
inputs of each other’s data to obtain the atmospheric and glacial states at 1 X 104, southern highlands are enough high to allow surface fluvial activity.
2% 104,3%104, 5% 104 and 1 X 105 Mars years. 0% H_ 1 bar 0% H 1.25 bar 0% H_ 1.5 bar 0% H 1.75 bar 0% H_ 2 bar

B With lower surface pressures and H, mixing ratio, surface temperature are
globally below 273 K due to weak greenhouse effects of CO, and H,.

236.0 K w2411 K -
S5 30N 30N =
Total 10° Mars years ‘P B E -
A A L NN z
B S [
( 30 yrs 1x10% yrs 30 yrs 1x10* yrs 30 yrs 1x10% yrs 30 yrs 2x10% yrs 30 yrs 5x10% yrs - -
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ALICE PM ALICE PMG(M ALICE PMGCM ALICE PMGCM ALICE Final state =2 s i
Climate (PMGCM): - Climate data Glacier (ALICE): =
* Surface temperature « Ice extent, thickness - . o
* Snow accumulation and ablation « Ice velocity, temperature S T B N e R e S R T S )
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+ Surface and bedrock topography
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Fig. Global maps of MAT (K) after 105 Mars years for H, mixing ration of 0, 3 and 6% and surface pressures between 1and 2 bar.
Fig. Topography before TPW with lowland ocean/lakes



Results - ice sheet thickness

B With lower surface pressures and H, mixing ratio, extensive ice sheets were
distributed in southern highlands where VNs are mainly observed.
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B With higher surface pressures and H, mixing ratio, ice sheets were limited

around the Tharsis bulge due to globally warm environment.
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Fig. Global maps of ice sheet thickness (m) after 105 Mars years for H, mixing ration of 0, 3 and 6% and surface pressures between 1and 18

2 bar. 3 We replotted global data set towards the present Martian topography by coordinate transformation.
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Results - fluvial activity () Department of Cecphysics
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B With higher surface pressures and H, mixing ratio, rainfall-fed and meltwater-
fed rivers widely covered VN observed areas.

B Assuming the total erodes VN volume of 3X10° km? (Luo et al., 2017), VN
formation timescales could be estimated to be 10* — 105 Mars years.
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Fig. Global maps of river discharge (mm/sol) after 105 Mars years for H, mixing ration of 0, 3 and 6% and surface pressures between 1and 2 bz-qr5
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Results - subglacial meltwater

B With lower surface pressures and H, mixing ratio, most ice sheets were cold-
based, which prevented formation of surface fluvial activity.

B With higher surface pressures and H, mixing ratio, most ice sheets temperate-

based, which supplied sufficient water to form surface runoff.
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Fig. Global maps of meltwater rate (m/year) after 105 Mars years for H, mixing ration of 0, 3 and 6% and surface pressures between 14
1and 2 bar. % We replotted global data set towards the present Martian topography by coordinate transformation.

Results - climate classification

B Long tern equilibrium climate state on early Mars is divided by 3 types:
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OOWith high H, mixing ratio, early Mars was warm climate (T,,, > 273 K).
» Prolonged rainfall-fed river systems carving valleys on southern highlands.

OWith middle H, mixing ratio, early Mars was cool climate (T, < 273 K).
» Widespread temperate—based ice sheet supplying surface runoff water.

OWith low H, mixing ratio, early Mars was cold climate (T,,, << 273 K).

» Widespread cold—based ice sheets, preventing ice sheet from melting.

Table. Early Mars climate classification and mean annual temperature (MAT) (K) (Warm: T,y 2273 K, Cool:250 K< T, <273 K and Cold: T, <250 K)

1 bar 1.25 bar 1.5 bar 1.75 bar 2 bar
H, 0% Cold (217.2 K) Cold (224.8 K) Cold (230.7 K) Cold (236.0 K) Cold (241.1 K)
H, 1% Cold (220.1 K) Cold (227.4 K) Cold (234.1 K) Cold (240.6 K) Cold (247.5 K)
H; 2% Cold (221.9 K) Cold (230.3 K) Cold (236.7 K) Cold (245.3 K) Cool (253.4 K)
H2 3% Cold (223.7 K) Cold (232.3 K) Cold (240.6 K) Cold (249.3 K) Cool (258.2 K)
H, 4% Cold (225.3 K) Cold (233.6 K) Cold (243.6 K) Cool (253.1 K) Cool (262.5 K)
H, 5% Cold (227.0 K) Cold (236.1 K) Cold (246.1 K) Cool (256.3 K) Cool (267.8 K)
H, 6% Cold (227.8 K) Cold (238.0 K) Cold (248.9 K) Cool (259.4 K) Warm (277.4 K)
H, 8% Cold (229.5 K) Cold (241.6 K) Cool (253.1 K) Cool (265.5 K) Warm (287.8 K) 16



Discussion - principal findings () e
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B We obtained the following results:

O Both warm and cool early Mars could have preferable for VN formation.

» Rainfall-fed and meltwater-fed rivers would carve VNs on southern highlands, although previous
early Mars studies have proposed warm or cold climates, but not considered ice sheet melting
(Ramirez et al., 2014; Wordsworth et al., 2013).

[ Rainfall and meltwater forms rivers which are consistent with observed VN .

> River systems are distributed in southern low to middle latitudes, covering more than 60% of VNs
observed when 6% H, and 2 bar CO, atmosphere.

O Most of valleys could have been formed within 104 — 105 Mars years.

» The formation timescale of VNs is good agreement with geological constraints of 104-10° years
(Moore et al., 2003; Moore and Howard, 2005).

Warm climate (H, rich)

Cool climate (H, poor)

> y o~ _t
consistent with VN observations

e ]

i

inconsistent with VN observations
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Summary
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B The early Martian climate can be classified into 3 types depending on the
atmospheric conditions:

O Cold climate characterized by global mean temperature much below 273 K
and widespread cold-based ice sheets when surface pressures were less than
1.5 bar or H, mixing ratio was less than 1%.

O Cool climate characterized by global mean temperature slightly below 273
K and widespread temperate-based ice sheets, whose subglacial meltwater
channels carved valleys over 103 years when surface pressures were close to
2 bar and H, mixing ratio was ~2-5%.

OO0 Warm climate characterized by global mean temperature above 273 K and
rain-fed river systems carving valleys over 10 years when surface pressures
were 2 bar and H, mixing ratio was = 6%.

B Large impact event could trigger the release of vast quantities of H, all at once.

B The mixing ratio of the atmospheric H, could remain high enough to induce VN
formation over 10° years after a large impact event if hydrogen escape is
assumed to be diffusion-limited. °

Discussion - H, production and loss (&) 2epartment of Seophysics
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B From impactor size frequency, several objects with diameters >100 km impacted
surface of early Mars (Haberle et al., 2019).

B Assuming a highly reduced oxidation state, such as an H-type chondrite with
27.1% iron by mass (Kallemeyn et al., 1989) and density of 3.42x103 kg/m3
(Consolmagno et al., 2008), a 100 km diameter impactor could yield as much as
1.75X%10'¢ kg of H,, which results in ~5% H, mixing ratio in a 2 bar atmosphere.

B If H, escape is assumed to be diffusion limited, the mixing ratio of the
atmospheric H, could remain high enough to induce VN formation for 10° years.
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Fig. History of impact events (top), H, volume mixing ratio
(middle), and global mean surface temperature (bottom) for

Fig. H, mixing ratio history assuming the diffusion-limited escape for
1 bar (solid) and 2 bar (dashed) (provided by T. Yoshida).

1 bar simulation with f4,=0.5%. (Haberle et al., 2019) 18
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