UVI 雲追跡風の観測システムシミュレーション実験による ロスビー波の再現とその金星大気循環への影響

小守 信正¹, 杉本 憲彦^{1,2}, 藤澤 由貴子¹, 阿部 未来³, 神山 徹⁴, 安藤 紘基⁵, 高木 征弘⁵, 山本 勝⁶ (1: 慶大 自然セ, 2: 慶大 日吉物理, 3: 横国大 先進学環, 4: 産総研 DigiARC, 5: 京産大 理, 6: 九大 応力研)

要旨:金星の雲頂高度付近では,低緯度では周期約4日のケルビン波,中緯度では約5日のロスビー波がし ばしば観測されており,スーパーローテーションなどの大気循環の維持に重要な役割を担っていると考えら れている.本研究では,線形波動伝播モデルで生成されたロスビー波に伴う水平風を,金星探査機「あかつ き」雲追跡風と見做して雲頂高度 (~70 km) に 30 日間に渡り同化する観測システムシミュレーション実験を 行った. Eliassen–Palm flux を用いた解析から,中緯度域ではロスビー波の振幅増大が東西平均東西風の減速 を誘起していることが示された.またデータ同化停止後,同化を行わなかった場合とは異なる準平衡状態に 約10日で移行したことから,新たな観測データが得られなくても,同化された観測の『記憶』がしばらくは 維持され得ることが示唆された.

第25回 惑星圏シンポジウム かぜ&つち 2024年2月21日(水), 東北大学 青葉サイエンスホール

UVI 雲追跡風の観測システムシミュレーション実験による ロスビー波の再現とその金星大気循環への影響

小守信正1[™], 杉本憲彦^{1,2}, 藤澤由貴子¹, 阿部未来³, 神山徹⁴, 安藤紘基⁵, 高木征弘⁵, 山本勝⁶

1**慶應義塾大学 自然科学研究教育センター**, ²慶應義塾大学 日吉物理学教室, ³横浜国立大学 大学院先進実践学環, 4産業技術総合研究所 デジタルアーキテクチャ研究センター, ⁵京都産業大学 理学部, ⁶九州大学 応用力学研究所

komori-n@keio.jp

基盤研究(S)『あかつきデータ同化が明らかにする金星大気循環の全貌』

金星の特徴

- 自転が極めて遅い
- CO₂の濃密な大気
- 厚い雲層 (45–70 km)

図は <u>https://www.stp.isas.jaxa.jp/venus/sci_meteor.html</u> から拝借

	金星	地球
半径	6050 km	6378 km
重力	8.9 m/s ²	9.8 m/s ²
公転周期	225日	365日
自転周期	-243日	1日
太陽日	_117日	1日
大気組成	CO ₂	N ₂ , O ₂
アルベド	0.78	0.30
表面気圧	92 bar	1 bar

スーパーローテーション Super Rotation

● 自転を追い越す高速の東風(約4日で一周する)

komori-n@keio.jp

図は<u>https://www.stp.isas.jaxa.jp/venus/sci_meteor.html</u>から拝借

第25回 惑星圏シンポジウム

金星探査機「あかつき」 Venus Climate Orbiter "AKATSUKI" (PLANET-C)

● 紫外イメージャ (UVI; 283 nm: SO₂ & 365 nm: unknown absorber), 1-µm カメラ (IR1), 2-µm カメラ (IR2), 中間赤外カメラ (LIR), 雷·大気光カメラ (LAC), 超高安定発振器 (USO)

komori-n@keio.jp

図は<u>https://akatsuki.isas.jaxa.jp/mission/spacecraft/</u>から拝借

第25回 惑星圏シンポジウム

観測的知見

→ これらの波が Super Rotation などの金星大気循環に与える影響を調べたい

金星データ同化システム ALEDAS-V を利用した先行研究

- 更した場合の再現性を調査
- 構築 → 熱潮汐波の再現性が向上することを確認

本研究

題点を確認し、金星大気循環に与える影響を明らかにする

● 雲頂高度では, 低緯度で 4日波 (ケルビン波)・中緯度で 5日波 (ロスビー波) が存在 (e.g., Rossow et al., 1990)

● Sugimoto et al. (2021) は別の VGCM で, Sugimoto et al. (2022) は線形波動伝播モデルで生成された**ケルビン波** に伴う水平風を同化する観測システムシミュレーション実験 (OSSE) を実施 → 観測頻度や観測範囲を変

● Fujisawa et al. (2022) は「あかつき」UVI 雲追跡風データを同化し、世界初の金星客観解析データセットを

● 線形波動伝播モデルで生成された**ロスビー波**に伴う水平風を同化する OSSE を通じて,その再現性や問

第25回 惑星圏シンポジウム

5

数値モデル

金星大循環モデル AFES-Venus (Sugimoto et al., 2014)

- 水平解像度: T42 (格子数: 128 × 64), 鉛直: 60層 (2 km 幅で高度 120 km まで)
- ●比熱:一定値 (1000 J Kg⁻¹ K⁻¹)
- 太陽加熱: Tomasko et al. (1980)
- 赤外冷却: ニュートン冷却 (Crisp, 1986)
- 地形および惑星境界層は考慮しない
- 地表で Rayleigh 摩擦 (時定数: 0.5日), 80 km 以高でスポンジ層
- 鉛直渦拡散: 0.15 m² s⁻¹; 水平渦拡散: 4次, 時定数 0.1日
- ◎ 熱潮汐波は無し
- 自転の向きは地球と同じ(Super Rotation は西風)

ネイチャーラン

疑似観測

あかつき UVI 雲追跡風を模した観測

- 高度 70 km, 経度 120℃-120℃ で1時間毎に**東西風・南北風**を「観測」
- 観測緯度幅を変えたデータを作成
- 3 m s⁻¹ のランダム誤差を付加

L30	30ºS30ºN を観測	
L45	45ºS45ºN を観測	
L60	60ºS60ºN を観測	
L75	75⁰S–75⁰N を観測	
L90	90ºS–90ºN を観測	
Lexc30	30ºS–30⁰N 以外を観測	
Lexc45	45ºS45⁰N 以外を観測	
Lexc60	60ºS-60ºN 以外を観測	
L0090	北半球 (Eq.–90⁰N) を観測	

データ同化実験

金星データ同化システム ALEDAS-V (Sugimoto et al., 2017)

- AFES-Venus に局所アンサンブル変換カルマンフィルタ LETKF (Miyoshi & Yamane, 2007) を適用
- アンサンブルメンバー数:31; 局所化スケール:水平 400 km,鉛直: logP=0.4
- 4 m s⁻¹の観測誤差を仮定, 10% のスプレッド膨張を使用

実験設定

- 理想化された SR を初期条件として4年間スピンアップ
- ●疑似観測データを6時間毎に30日間同化 その後(同化をせずに)さらに30日間の予報実験
- 同化をしないケース (frf: free run forecast) と比較

高度 69 km での経度時間断面

- 上段:赤道での東西風偏差
- ●下段:40°Nでの南北風偏差
- frf の周期は5.5日が卓越
- L30 の周期は5.75日が卓越

komori-n@keio.jp

4.2

高度 69 km での解析インクリメント

- ●第一推定値と解析値の 30日間の時間平均の差
- $U^{\text{obs}} < U^{\text{gues}}$ なので西端で $\Delta U < 0$
- uを補償するように 北半球で $\Delta v < 0$, 南半球で $\Delta v > 0$
- $\Delta \omega$ は $\Delta u, \Delta v$ の収束に対応し, 地表まで到達

komori-n@keio.jp

6ÓW

温度 T

第25回 惑星圏シンポジウム

鉛直圧力速度ω

合成図解析 (経度緯度断面)

- 高度 69 km での温度偏差(色)と水平風偏差(矢印)
- frf は 5.5日周期, L30 は 5.75日周期の合成図
- 40°N・40°S 付近の渦構造はやや強化(70°N・70°S 付近はあまり変わらず)

komori-n@keio.jp

高度 69 km での解析インクリメント

- ●第一推定値と解析値の 5.75日周期の**合成図の差の偏差**
- Δu, Δv は東西波数1の構造を強化

komori-n@keio.jp

温度 T

-0.36-0.32-0.28-0.24-0.2-0.16-0.12-0.08-0.040.04 0.08 0.12 0.16 0.2 0.24 0.28 0.32 0.3

第25回 惑星圏シンポジウム

鉛直圧力速度ω

^{0.54-0.48-0.42-0.36-0.3-0.24-0.18-0.12-0.060.06 0.12 0.18 0.24 0.3 0.36 0.42 0.48 0.54}

東西平均場への影響(緯度高度断面)

- 30日間の時間平均
- 東西風(色)と温度(等値線)
- 左下:両者の差
- 右下:最初の解析インクリメント
- データ同化に伴う直接的な変化 だけでは説明できない

komori-n@keio.jp

14

東西平均場への影響(緯度高度断面)

• Eliassen–Palm flux (矢印) とその発散から評価した加速率(色)

$$F^{(\phi)} = \rho_0 a \cos \phi \left(\bar{u}_{z^*} \frac{\overline{v'\theta'}}{\bar{\theta}_{z^*}} - \overline{u'v'} \right), \quad F^{(z)} = \rho_0 a \cos \phi \left[\left\{ f - \frac{1}{a \cos \phi} \frac{\partial(\bar{u} \cos \phi)}{\partial \phi} \right\} \frac{\overline{v'\theta'}}{\bar{\theta}_{z^*}} - \overline{u'w'} \right]$$

● ロスビー波の振幅増大に伴い 40°N・40°S 付近で減速(60°N・60°S 付近で加速)

komori-n@keio.jp

データ同化停止後の応答

- 左:高度 69 km での frf と L30 の RMS 差(赤:東西風,青:南北風,黒:温度)
- 右:41日目から60日目までで時間平均した東西平均東西風(緯度高度断面)
- データ同化停止後,10日ほどで新たな準平衡状態に
- 観測データが得られない期間があっても、しばらくは状態が維持される可能性

komori-n@keio.jp

まとめと今後の課題

線形波動伝播モデルで生成されたロスビー波の水平風を AFES-Venus へ同化する OSSE を実施

- データ同化の影響は上下 10 km 程度までに限定される(ωを除く)
- データ同化を行った緯度幅 (30°S-30°N) を超えて東西平均東西風にも影響を与える
- 中緯度 (~40°S/N) でのロスビー波の増幅と東西平均東西風の減速はよい対応関係がある
- データ同化を停止した後も10日ほどで新たな準平衡状態に移行し観測の影響は残る
- ロスビー波の再現には低緯度 (30°S-30°N) のみの観測では不十分かもしれない

今後の課題

- ◎ データ同化を行う緯度幅を変えた実験についても結果を確認する
- ●「あかつき」UVI 雲追跡風データの同化によるロスビー波の再現に向けて準備を進める

