惑星探査機で観測された木星 DAM 波・HOM 波の研究

今井 雅文* 今井 一雅*

*京都大学大学院理学研究科地球惑星科学専攻 [†]高知工業高等専門学校·電気情報工学科

1. 緒 言

木星デカメートル (DAM) 波とヘクトメートル (HOM) 波は、木星の固有磁場とプラズマの相互作用によるサイ クロトロンメーザー理論^Dで放射されると考えられてい る自然電波放射である.表1に先行研究で明らかとなっ た木星 DAM 波・HOM 波の特徴をまとめたものを示す.

この木星 DAM 波・HOM 波は地上観測や衛星観測に より,幅広く研究がなされているが,これらの電波の複 雑な放射特性や観測の制約により,未だに全貌が明らか となっていない^{3), 0}.地上観測では,地球の電離層の影 響により,観測可能な周波数は15 MHz 以上である.一 方,惑星探査機での観測はそれぞれの探査機に搭載され ている波動観測機器の性能(機器の分解能,サンプリン グ時間,アンテナの長さ等)に依存する.今まで唯一, 惑星探査機ボイジャーに搭載された Planetary Radio Astronomy (PRA)機器⁹が木星 DAM 波・HOM 波を 連続的に観測しているが,他の機器からの電波干渉や高 周波・低周波受信機の感度の違いにより,この二つの電 波放射源の関係は十分理解されていない.

本研究の目的は、惑星探査機カッシーニとボイジャー 1・2 号が木星接近時に観測した木星電波データをもとに、 木星 DAM 波・HOM 波の関係性を統計解析により明ら かにすることである.また、それらの結果から、木星電 波のビーム構造や電波源の位置に関しても考察する.

2. 惑星探査機の観測データ

木星 DAM 波・HOM 波が発見されて以来,地上観測 や地球近傍の衛星で観測が行われている^{3),6)}が,それぞ れの観測で得られた木星電波データの周波数範囲は異な る.例えば,惑星探査機カッシーニ,ボイジャー1号・2 号で観測された木星電波のデータは高い SN 比を有し, 観測周波数 16 MHz 以下で直接比較することができる. 本研究では,主に周波数 25 MHz 以下の木星 DAM 波・ HOM 波構造に絞って解析を行った.

2.1 惑星探査機カッシーニの観測装置 RPWS

 Table 1
 Some characteristics of DAM and HOM

惑星探査機カッシーニに搭載されている Radio and

	DAM		HOM
Io effect 2)	Yes	No	No
Classification	Io-DAM	non-Io-DAM	HOM
Upper frequency	$39.5{ m MHz}^{3)}$	38 MHz ³⁾	3^{3} or $7{ m MHz}^{4)}$
Lower frequency	a few MHz ³⁾		300 kHz ³⁾
L-shell	≈5.9 5)	≈5.9 ⁵⁾ or ≥7 ⁶⁾	≥10 7)

 Table 2
 Cassini and Voyager spacecraft collection summary

Spacecraft	Observations	Spacecraft	#Rotations
	Used in this	Jovigraphic	of Jupiter
	Study	Latitude	
Cassini	2-Oct-00-	+3.7° –	339
	21-Mar-01	-3.7°	
Voyager 1	6-Feb-79-	+3.2° –	133
	7-Apr-79	-5.3°	
Voyager 2	8-Jun-79 –	+7.3° –	122
_	30-Jul-79	+5.2°	

Plasma Wave Science (RPWS) 機器 ¹⁰は5 つの受信機 で構成されており,1 Hz から16 MHz までの波動デー タを観測する装置である. RPWS の受信機の1 つである High Frequency Receiver (HFR) は3本のモノポール アンテナを用いて,3.5 kHz から16 MHz まで観測でき る. この3本のアンテナはいずれも長さが10 m あり, Eu, Ev, Ew と呼ばれている. Eu と Ev は平行に120° 離れた所に位置し,それらにほぼ直行する形で Ew が配 置されている.本研究では,HF1 (0.325 MHz から4.075 MHz まで50 kHz 毎の全76 チャンネル)と HF2 (4.025 MHz から16.025 MHz まで200 kHz 毎の全61 チャン ネル)の32 秒間隔でサンプリングされた観測モードを 用いる.

2.2 惑星探査機ボイジャーの観測装置 PRA

惑星探査機ボイジャーに搭載された PRA 機器は, 1.2 kHz から 40.2 MHz までの波動データを観測する装置で, 2 つの受信機で構成されている. PRA の受信機の 1 つで ある High Band Receiver (HBR) は 2 本の直行した長 さ 10 m のアンテナにより, 1.3 MHz から 40.2 MHz ま で観測できる受信機である.本研究では, HBR を 307.2 kHz 毎 (128 チャンネル) に, 42 秒平均でサンプリング された観測モードを用いる.

2.3 解析データ

探査機で観測された木星 DAM 波・HOM 波のデータ による変化を直接比較するため,惑星探査機カッシーニ, ボイジャー1 号・2 号で観測されたデータを解析する. 本研究で解析した幾何学的パラメータを表 2 に,探査機 の軌道と太陽との位置関係を示す Local Time,木理緯度 を図1に示す.ただし,探査機が木星最接近時に急激に 距離,Local Time,木理緯度が変化したため,カッシー ニは 200 RJ (木星の半径の 200 倍の距離)以上,ボイジ ャー1 号・2 号は 25 RJ以上のデータだけ用いている.

Fig. 1 Trajectories of Cassini, Voyager 1, and Voyager 2.

3. 解析方法

先行研究では、惑星探査機ボイジャーで観測された木 星 DAM 波のデータカタログが作成され、既に公開され ている^{11),120}が、各々の観測周波数では解析されていない. しかし、木星 DAM 波はダイナミックスペクトラム(時 間対周波数)上では、円弧のような構造^{3),60}をしている ため、同じ時間に観測しても、各々の観測周波数で電波 強度が異なる.本研究では、惑星探査機カッシーニとボ イジャー1号・2号によって観測された各々の電波の周 波数に対して、木星発生頻度の導出を行う.

3.1 木星電波発生頻度の計算方法

惑星探査機カッシーニとボイジャーで観測された波動 データを周波数毎に、100 R_Jにおいて距離補正を行う. 次に、木星の磁場自転毎に、個々の電波強度の平均値(μ) と標準偏差(σ)を計算する.本解析では、Voyager/PRA と Cassini/RPWS の受信機の感度がそれぞれ異なるた め、カッシーニとボイジャーの場合は、発生頻度を決め るため、閾値を μ + 0.2 σ と μ + 1 σ とする.出現回数 A は、観測データが閾値以上の場合にカウントし、観測回 数 B は受信機が動作している場合にカウントし、観測回 数 B は受信機が動作している場合にカウントする. A と B は 2°の木星磁場経度 CML と 5°の衛星イオの位相 角 Io Phase の bin 毎に整理する.したがって、この方法 では強い電波も弱い電波も同じ重みで比較することとな る.これは、強い電波成分しか解析できない電波強度の 平均プロットと比べて、CML において周期的で弱い電 波を解析することに優れている^{3,6,9}.

木星電波発生頻度 *OP*は bin 毎に 0 から 1 の値である *AIB* で計算される. さらに,衛星イオに関係しない領域 (80° \leq lo Phase \leq 100°及び230° \leq lo Phase \leq 260° を除く領域)の範囲を抽出して,各々の周波数毎に CML (4.1 参照) に整理する. カッシーニの場合,全体の発 生頻度 *OP*は (1) 式で導出される.

$$OP = \left\{ \frac{A(E_U)}{B(E_U)} + \frac{A(E_V)}{B(E_V)} + \frac{A(E_W)}{B(E_W)} \right\} / 3$$
(1)

この方法は、アンテナの指向性パターンによる影響を 軽減できる統計的な解析方法である.この一連の作業を 周波数毎に行う.

4. 解析結果

本章では、惑星探査機カッシーニとボイジャーで観測 された木星 DAM 波・HOM 波の発生頻度を木星磁場経 度 CML 対周波数で描画した図を用いて議論する.本章 の最後では、惑星探査機カッシーニの接近前と後で観測 された non-Io-B と non-Io-A の特徴から木星電波放射モ デル及び電波源の位置に関しても議論する.

4.1 惑星探査機カッシーニとボイジャーで得られた 木星電波発生頻度マップの比較

衛星イオに関係しない木星 DAM 波と HOM 波の木星 磁場経度依存性を調べるため,惑星探査機カッシーニ, ボイジャー1 号・2 号が木星に最接近した前・後のデー タを用いて,描画した CML 対周波数の木星電波発生頻 度マップを図2に示す.ボイジャーのデータは25 MHz までの周波数を示している.ボイジャーとカッシーニで 共に観測した周波数帯は白の横線で上・下限を示してい る.図2の複雑な構造から"non-Io-B", "non-Io-A", "non-Io-C", "non-Io-D", "HOM"のように,発生頻度 の高いところをラベルを振って,分類している^{3,6}.そ れぞれの成分を説明する前に,3つの大きな雑音領域に 関して以下に述べる.

・探査機自体からの雑音により、特定の周波数に連続 的な電波干渉がある(特に図2aと2bの15 MHz付近).

・ボイジャーの木星接近前の図2cと2eで,探査機に
 搭載された他の機器による縦縞の周期的な雑音がある⁹.

・解析で用いた閾値が雑音を出現回数に数えたため, ボイジャー1号の木星接近後とボイジャー2号の木星接 近前後の周波数22MHz以上で,解析雑音が生じている.

以上の3つの雑音領域が一部の木星電波本来の構造を 隠してしまう場合がある.

惑星探査機カッシーニとボイジャー1 号の木星接近前 の軌道が非常に近いため、これらの木星発生頻度マップ である図 2a と 2c を用いて、Cassini/RPWS と Voyager/PRA の受信機の感度を比較する.前述した雑音 により、一部隠されている部分もあるが、顕著な non-Io-B や低い周波数部分の HOM 波の構造は共通し た特徴が見られる.しかし、例えば、図 2a の 16 MHz は non-Io-A と non-Io-C の構造がはっきりと現われてい るが、図 2c では、ほとんどそれらしき特徴が見受けられ ない.これは、RPWS が PRA より、距離補正をしてい るにもかかわらず、約2桁受信感度が優れているためで あると考えられる¹³.

Fig. 2 Occurrence probability of non-Io-DAM and HOM shown as a function of Jovian System III CML. The data taken from Cassini, Voyager 1, and Voyager 2 using (a) 187, (b) 152, (c) 64, (d) 69, (e) 74, (f) 48 planetary rotations before and after Jovian encounter.

周波数 16 MHz から 25 MHz の non-Io-A の構造を示 した図 2e は地上観測データにより示された構造によく 似ている³⁾. また,一部 Local Time 効果⁹により,図 2eの non-Io-A は240°から300° CMLの範囲で存在し ている.一方,惑星探査機ボイジャー1号と2号の軌道 が似ているにもかかわらず,周波数 16 MHz 以上の non-Io-A が図 2c で顕著に現われてない.これは,縦縞 の干渉雑音が木星電波放射の強度より強く,発生頻度が 局所的に高くなったためであると考えられる.

その他の non-Io-A の特徴としては、図 2a より、2 つ の 異 な る 領 域 (sub: 210° \leq CML \leq 260°, main: 260° \leq CML \leq 330°)に発生頻度が高くなっている.前 者は non-Io-B の端と周波数 9 MHz の 210° CML あた りで繋がっているように見られ、後者は独立して、周波 数 12 MHz の 270° CML 付近まで続いている.一方、 図 2b では、周波数 16 MHz において、 non-Io-A の領域 は230° \leq CML \leq 250°となっている. 図 2a の sub と main を含む non-Io-A の方が図 2b より広範囲に分布し ている理由は、観測した Local Time の違いや木理緯度 の違いにより生じた結果であると考えられる.木理緯度 による変化を緯度効果、または D_E効果³と呼び、地上観 測データより、特に non-Io-A で顕著な現象である.また、本研究により、non-Io-A に sub と main の成分が存 在することが明らかとなった.

図2で得られた non-Io-A&C と HOM の周波数構造か ら, non-Io-A&C が HOM に独立しているかを議論する. 図 2b の周波数 5 MHz に, non-Io-C と HOM の間に発 生頻度が低く,狭い領域 (316° \leq CML \leq 322°) が見ら れる.これは, HOM が non-Io-C から独立していると支 持する事例である.故に, non-Io-A&C と HOM が重な った構造は観測木理緯度に依存する可能性を示唆する.

低い周波数帯の木星 HOM 波に関しては、図2に矢印

Fig. 3 Occurrence probability of (a) Cassini inbound, at 3.7, and (b) outbound, at -3.7, transformed from Figure 3a and 3b. The black horizontal

で示す CML 方向に幅の広い領域が 2 か所ある. 多くの 先行研究では、高い周波数の HOM 波が低い周波数の non-Io-DAM であるか独立した放射であるかが議論され ており ^{3),4}, HOM 波の最高周波数は 3 MHz³と 7 MHz⁴ と報告されている. しかし、観測周波数 5 MHz から 16 MHz までの観測事実が欠如しているため, HOM 波の最 高周波数は十分理解されていない. 本研究では、受信感 度の高い Cassini/RPWS により, 初めて、図 2 中で HOM 波(100° \leq CML \leq 170°)の上限周波数が 10 MHz 程 度までであることが分かった. もう片方の HOM 波

(270° \leq CML \leq 310°)に関しては、その強度が、周波数が高くなるにつれて弱くなると考えられるため、最高周波数が $6 \,$ MHz までしか現われていないと考えられる.

最後に、図 2b では、周波数 7 MHz から 11 MHz まで の50° CML付近の領域で発生頻度が高くなっていること が明らかとなった. この領域は、先行研究では報告され ていない領域で、本研究で新しく発見された成分であり、 この領域を non-Io-D と名付けた. この non-Io-D は、他 の成分と独立しており、Local Time 効果や緯度効果が起 因していると考えられる.

4.2 木星電波放射モデル

図 2 のカッシーニ探査機が木星に接近した前と後の non-Io-B と non-Io-A の特徴に着目して、木星電波放射 モデルを提案する. Imai et al. [2008]¹⁴では、惑星探査 機カッシーニで観測された全ての木星電波データを用い て non-Io-B と non-Io-A の周波数 9 MHz から 16 MHz までの間のV字型の特徴を木星電波発生頻度マップによ り明らかにした. 観測結果を説明するために、放射角シ ミュレーションを行い、放射周波数が減少するに従い、 放射角が小さくなるモデルを提案した.本研究では、V 字型特性をもとに、このモデルを応用して説明できるモ デルを提案する.提案する木星電波放射モデルは以下の5つの前提条件をもとに考える.

・電波源はジャイロ周波数に近い領域の磁力線に沿っ
 て存在する³⁾.

・対象周波数が高いため、周りのプラズマ環境に作用 されず、電波源から放射された電波は直線伝搬する.

・木星磁場 VIP4 モデル ¹⁵⁾を用いる.

・観測位置を木星接近前と後では、緯度3.7°と-3.7°で、 共に木星からの距離 100R」にする(Imai et al. [2008] ¹⁴⁾ では観測位置を緯度0°とし距離は同じ 100R」).

・木星電波のビームは中空のコーン状に放射され、厚
 さは2°以下¹⁰である.

図3は、図2a, bの惑星探査機カッシーニで観測した 木星電波発生頻度マップ(4 MHz~16 MHz)である. L-shell=5.9の経度198°の磁力線に沿って、シミュレー ションを行った場合、白色の線はImai et al. [2008]¹⁴⁾ のモデルでの結果で、赤色の線は本研究で改良したモデ ルでの結果である.この図から、赤色の線の方が白色よ り、観測結果によく一致している.それぞれの線の幅は コーンの厚さ±1°の部分を示す.カッシーニの木星接近 前後を合わせた木星電波発生頻度マップからモデルを導 出した Imai et al. [2008]¹⁴⁾では、図3より、木星接近前 と後の木星電波発生頻度マップの結果を説明できないこ とが分かった.そのため、本解析では、木星接近前と後 で異なるV字型特性に着目して、モデルを導出した.

図 3a の木星接近前の場合,周波数 16 MHz の放射角 49°では、2 ヶ所の領域(System III 167°±2°,237°± 2°)で交差している.周波数が9 MHz に減少すると, 放射角34°は1 ヶ所である188° ≤ System III ≤ 214°の 間で交わっている.

一方,図 3b の木星接近後の場合,周波数 16 MHz の 放射角60°では、2 ヶ所のところ(System III 159°±

Fig. 4 The best fitting cone half-angle of the V-shape pattern versus frequency from 9 to 16 MHz for 1 MHz intervals at L-shell = 5.9 (upper plot) and 10 (lower plot).

2°,245°±2°)で交差している.周波数が12 MHzに 減少すると,放射角54°はまだ2ヶ所の領域 (System III 166°±2°,237°±2°)で交わっている. 図3bより,観測周波数12 MHz以下では木星電波発生 頻度が急激に減少しているため、木星電波構造がはっき りしていない.そのため、本解析ではそれ以下の放射角 シミュレーションは行えなかった.この発生頻度の減少 は、木星電波の周波数によって、電波源の位置や電波源 付近のプラズマ環境が変化することにより木星電波のビ ーム構造が変化したためであると考えられる³.

L-shell=10 の場合は、放射角がそれぞれ異なるが、前 述の L-shell=5.9 の場合と同様な放射特性がシミュレー ションで得られた. 今回のシミュレーションで求めた周 波数 9 MHz から 16 MHz までの 1 MHz 毎の放射角を 周波数に対してプロットしたグラフを図 4 に示す. この 結果より、以下の 2 つの結論が導き出される. ・放射角は周波数 16 MHz から 9 MHz にかけて、減少すること

・観測緯度-3.7°の放射角(図5a広い円錐)の方が観 測緯度3.7°の放射角(図5a狭い円錐)より、大きいこと

前者は、先行研究でも同様の特徴を示すことが分かっ ているため^{14),17},それらを支持する結果である.一方, 対称的な放射モデルで仮定している限り、後者の結果を 導き出すことはできない.そのため、この放射角度は Local Time 効果に起因していると考えられる.惑星探査 機カッシーニの観測範囲は、接近前で Local Time 10.6 時から 12.8 時の方向を、接近後で 19.2 時から 21.4 時の 方向を、それぞれ観測している.木星が太陽に面してい る場合は、プラズマ密度が高くなり、一方、木星が夜に 面している場合は、プラズマ密度が低くなる傾向を示す. 電波放射の成長率は、プラズマ周波数とサイクロトロン 周波数に大きく影響している ¹⁸ため、放射角度も Local Time により変化すると考えられる.

さらに本解析で改良した木星電波放射モデルをもとに、 non-Io-Bの発生頻度の高い領域(接近前148° \leq CML \leq 182°,接近後140° \leq CML \leq 170°)から、木星 non-Io-B と non-Io-Aの電波源を推定する.その結果、non-Io-B と non-Io-Aの電波源がSystem III(木星表面)180° ± 10°(L-shell = 5.9) と System III(木星表面)180° ± 5°(L-shell = 10)に局所的に集中して存在することが分 かった.図5に本解析で用いた電波放射モデルと電波源 の位置を3次元コンピュータグラフィックスで示す.

5. 結 言

本研究では、惑星探査機カッシーニとボイジャー1 号・2 号で観測した木星 DAM 波・HOM 波の周波数 0.3 MHz から 25 MHz までの周波数範囲で、複雑な電波周 波数構造の特徴を明らかとした. さらに、得られた V字 型 (non-Io-B と non-Io-A) 特性をもとに、木星電波放 射モデルの提案と電波源の範囲をシミュレーションによ り、定量的に見積もることができた.本解析で得られた 主な結果を以下に示す.

・惑星探査機カッシーニの木星接近後のデータより, 木星HOM 波の最大周波数が10 MHz までであることが 分かった.

・周波数 16 MHz 以下の non-Io-A で2つの異なる構造 (sub: 210° ≤ CML ≤ 260°, main: 260° ≤ CML ≤ 330°) が明らかとなった.

・周波数7 MHz から 11 MHz までの50° CML付近に
 新しい構造(non-Io-D と命名した)が出現していた.

・V 字型 (non-Io-B と non-Io-A) 特性の木星電波放 射モデルより,放射角度が観測緯度ではなく,むしろ Local Time 効果により,変化することが示唆された.

最後に, Imai et al. [2011a, 2011b] 19,20)には, さらな

Fig. 5 3D computer graphic (CG) images of the geometry of the emitting cones and the source locations based on VIP4 model.

る木星電波の統計解析結果と Cassini/RPWS を用いた 木星 HOM 波の偏波解析結果が議論されているため, 興 味のある方は,参照されたい.

謝 辞

本研究を進めるにあたり,木星発生頻度マップの作成 方法をご指導して頂いた Middle Tennessee State University の Charles A. Higgins 博士,論文執筆や研究 成果に有意義なご助言して頂いた NASA Godard Space Flight Center の James R. Thieman 博士に深く感謝致 します.

参考文献

- Wu, C. S., and L. C. Lee: Astrophys. J., 230, (1979), pp.621-626.
- 2) Bigg, E. K.: Nature, 203, (1964), pp.1008-1010.
- Carr, T. D., M. D. Desch, and J. K. Alexander: in Physics of the Jovian Magnetosphere, edited by A. J. Dessler, Cambridge University Press, New York, (1983), pp.226-284.
- Barrow, C. H., and M. D. Desch: Astron. Astrophys., 213, (1989), pp.495-501.
- Imai, K., J. J. Riihimaa, F. Reyes, and T. D. Carr (2002): J. Geophys. Res., 107(A6), 1081, (2002).
- Clarke, J. T., et al.: in Jupiter: the Planet, Satellites, and Magnetosphere, edited by F. Bagenal, W. McKinnon, and T. Dowling, Cambridge University Press, Cambridge, (2004), pp.639-670.
- Menietti, J. D., et al.: Planet. Space Sci., 51, (2003), pp.533-540.
- Warwick, J. W., J. B. Pearce, R. G. Peltzer, and A. C. Riddle: Space Sci. Rev., 21, (1977), pp.309-327.
- Alexander, J. K., T. D. Carr, J. R. Thieman, and J. J. Schauble, A. C. Riddle: J. Geophys. Res., 86, (1981),

pp.8529-8545.

- Gurnett, D. A., et al.: Space Sci. Rev., 114, 1, (2004), pp.395-463.
- Barrow, C. H.: Astron. Astrophys. Suppl. Ser., 46, (1981), pp.111-114.
- 12) Aubier, M. G., and F. Genova: Astron. Astrophys. Suppl. Ser., 61, (1985), pp.341-351.
- Zarka, P., and W. S. Kurth: Space Sci. Rev., 116, (2005), pp.371-397.
- 14) Imai, M., K. Imai, C. A. Higgins, and J. R. Thieman: Geophys. Res. Lett., 35, L17103, (2008).
- 15) Connerney, J. E. P., M. H. Acuña, N. F. Ness, and T. Satoh: J. Geophys. Res., 103, pp.11,929-11,939, (1998).
- 16) Kaiser, M. L., P. Zarka, W. S. Kurth, G. B. Hospodarsky, and D. A. Gurnett: J. Geophys. Res., 105, (2000), pp.16,053-16,062.
- Ray, L. C., and S. Hess: J. Geophys. Res., 113, A11218, (2008).
- Wong, H. K., C. S. Wu, F. J. Ke, R. S. Schneider, and L. F. Ziebell: J. Plasma Phys., 28, (1982), pp.503-525.
- Imai, M., K. Imai, C. A. Higgins, and J. R. Thieman: J. Geophys. Res., 116, A12233, doi:10.1029/2011JA016456, (2011a).
- 20) Imai, M., A. Lecacheux, K. Imai, C. A. Higgins, and J. R. Thieman: in Planetary Radio Emissions VII, edited by H. O. Rucker, W. S. Kurth, P. Louarn, and G. Fischer, Austrian Acad. Sci. Press, Vienna, (2011b), pp. 167–175.