Key Parameter of Planetary Magnetospheric Configuration

Keiichiro Fukazawa^{1, 2, 3}, Tatsuki Ogino⁴, Raymond J. Walker^{5, 6}

- 1. Research Institute for Information Technology, Kyushu University, Japan
- 2. International Center for Space Weather Science and Education, Kyushu University, Japan
- 3. CREST, JST, Japan
- 4. Solar-Terrestrial Environment Laboratory, Nagoya University, Japan
- 5. Institute of Geophysics and Planetary Physics, University of California, Los Angeles, USA

6. NSF, USA

Rotation effect to Jovian magnetosphere

Fig.1. Qualitative sketch of plasma flow in the equatorial plane (left) and of the associated magnetic field and plasma in a sequence of meridian surfaces (right) expected from the planetary wind model [*Vasyliunas*, 1983]

Fig.2. Simulated plasma flow vector and observed flow velocity vector for sulfur ions [*Krupp et al.*, 2001]

Simulation result of periodic plasmoid ejection

Fig. 3. Schematic diagram of the magnetopause (r_M) and corotation boundary (r_A) on the equatorial plane at Jupiter and Saturn. V_{θ} is the rotation velocity of the planet.

Vortex configuration of Kronian magnetosphere

Fig. 4. Schematic diagram of the magnetopause (r_M) and corotation boundary (r_A) on the equatorial plane at Jupiter and Saturn. V_{θ} is the rotation velocity of the planet.

Vorticity on equatorial plane at three snapshots

4

plane at Jupiter and Saturn. V_{θ} is the rotation velocity of the planet.

Vortices are formed along the magnetopause

Vortex configuration from observation

Fig. 6. One minute averages of Cassini magnetic field observations in KSO coordinates (X – Saturn to Sun, Z-upward normal to Saturn's orbital plane, Y – completes a right handed system) on March 17 and 18, 2006 [*Walker et al.*, 2011].

Masters et al. [2009] studied Cassini magnetic field and thermal plasma observations at the dawn magnetopause to infer tailward propagating surface waves on the boundary and suggested they were caused by the K-H instability.

Motivation

What parameters affect to the configuration of magnetosphere?

Rotation speed, magnetic field, plasma source...

- We are interested in the disturbed convection and vortex in the magnetosphere.
- It seems that those configurations are related to the cushion region.

Examine the relationship between the magnetospheric configuration and cushion region

Cushion Region Model

Character of cushion region in Jupiter and Saturn

7

Fig. 7. Schematic diagram of the magnetopause (r_M) and corotation boundary (r_A) on the equatorial plane at Jupiter and Saturn. V_{θ} is the rotation velocity of the planet.

Alfvén radius (r_A) is distance where the rotation speed (V_{θ}) equal to the Alfvén velocity. $r_A \sim \omega^{-\frac{2}{5}}$

KYUSHU UNIVERSITY

Simulation Results | Jupiter

Cushion region of Jupiter

Table 1. The subsolar distance to the corotation region, thickness of the cushion region and ratio of cushion region to magnetopause as a function of solar wind dynamic pressure [*Fukazawa et al.*, 2006]

	Dayside magneopause (R _J)	Corotation boundary (R _J)	Cushion region (R _J)	Ratio of cushion region to MP (%)
P _{dyn} (nPa)	X_m	X_{c}	$C_r = X_m - X_c$	C_{r}/X_{m}
0.090	76	68	8	10
0.045	90	75	15	17
0.023	102	81	21	20
0.011	119	83	36	30

In Jovian magnetosphere the cushion region rate varies dynamically

Location of MP and BS of Jupiter

Jovian BS and MP from simulation

9

Fig.8. Location of BS and MP as a function of $\mathsf{P}_{\mathsf{dyn}}$

Simulation Results | Saturn

Cushion region of Saturn

Table 2. The boundaries of the corotation region, thickness of the cushion region at subsolar point and the cushion region. The cushion region is between the magnetopause and corotation boundary on the dayside. The cushion rate is the ratio of cushion region in the magnetopause.

$P_{\rm dyn}$	IM	F	Magneto-	Corotation boundary		Cushion region	Cushion	
(nPa)	(n]	(nT) (R_S)			(R _s)		(R _s)	region rate (%)
	B_Z	B_{Y}	X_m	$X_{\rm c}$	$Y_{\rm avg}$	$Y_{\rm dawn}/Y_{\rm dusk}$	$Cr = X_{\rm m} - X_{\rm c}$	$Cr/X_{\rm m}$
0.0166	0.0	0.0	19.1	14.3	18.4	1.17	4.8	25
0.0166	-0.4	0.0	19.1	13.7	19.9	1.08	5.4	28
0.0166	0.4	0.0	19.1	14.9	18.3	1.30	4.2	22
0.0166	0.0	0.0	19.7	14.3	18.7	1.35	5.4	27
0.01	<u>^ 1</u>	<u>^ ^</u>	10 1	110	100	1 00	4.8	25
0.01 T	27							
0.00	32							
0.00 change in the Kroman magnetosphere 5.5								25
0.00 compared to the Jupiter 6.7								25
0.0083	0.0	0.4	19.1	15.8	19.6	1.33	5.8	27
0.0166	0.0	0.4	19.1	13.2	18.3	1.20	5.4	29
0.0166	0.0	0.4	19.1	13.8	18.0	1.25	5.4	28

Simulation Conditions

To see how the magnetosphere dynamically change to variation of rotation speed

Perform the simulation with the following conditions

- Use Saturn's parameters with changing the rotation angular speed as 1/2, 1/4, 1/8, 1/16, 1/32, 1/64.
- The solar wind conditions are 0.0083 nPa with no/northward IMF (0.4nT).
- Each run performs for 30 hours.

ω	1/2	1/4	1/8	1/16	1/32	1/64
$r_A(R_S)$	14.8	19.5	25.7	34.0	44.8	59.1
V_{θ} (km/s)	75.9	50.1	33.0	21.8	14.4	9.5

Table 3. Variation of Alfvén radius and rotation speed at Alfvén radius.

Simulation Results 1

Simulation results for no IMF

Fig. 10. The magnitude of magnetic field in the equatorial plane for the simulations with no IMF.

Simulation Results 2

Simulation results for northward IMF

Fig. 11. The magnitude of magnetic field in the equatorial plane for the simulations with northward IMF.

Simulation Results 3

Cushion region

Table 4. The boundaries of the corotation region, thickness of the cushion region at subsolar point and the cushion region.

ω	IMF (nT)	Magneto- pause (R _S)	Corotation boundary (R _S)			Cushion region (R _S)	Cushion region rate (%)	
	B_Z	X_m^{-}	X _c	$Y_{\rm avg}$	$Y_{\rm dawn}/Y_{\rm dusk}$	$Cr = X_{\rm m} - X_{\rm c}$	$Cr/X_{\rm m}$	
1/2	0.0	22.4	14.3	12.5	0.92	8.2	36	
1/2	0.4	21.6	14.3	13.2	1.14	7.4	34	
1/4	0.0	22.7	14.3	12.9	0.73	8.4	37	
1/4	0.4	21.1	12.7	11.1	0.97	8.4	40	
1/8	0.0	23.2	14.8	12.7	1.06	8.4	36	
1/8	04	21.1	12.1	11.6	1.06	9,0	43	
1/16	1/16 The cushion region rate changes							
1/16	(· 1	53					
1/32	(dy	61						
1/32	0.4	21.1	10.0	8.4	1.00	11.1	53	
1/64	0.0	23.2	8.4	5.6	0.60	14.8	64	
1/64	0.4	21.6	10.6	6.3	0.89	11.1	51	

Short Discussions

Effect of rotation to the magnetosphere

Magnetosphere becomes "soft" with decreasing the rotation speed

- In model calculation, decrease of rotation angular speed makes Alfven radius broader then cushion region decreases however, it is not in the simulation.
- The rotation speed at the Alfven radius is too small compared to the magnetospheric convection which has ~100km/s.
- From these results to determine the cushion region, we need to consider the rotation speed and it may be around 70km/s.

Summary

To examine the relationship between the magnetospheric configuration and cushion region

We confirm the region between magnetopause and corotation region (cushion region) is the important parameter of magnetosphereic configuration.

- ✓ Cushion region at Jupiter varies dynamically to the dynamic pressure and magntospheric configuration also change.
- ✓ Kronian magnetosphere has broad cushion region and it does not change to the dynamic pressure.
- ✓ Cushion region expands with decreasing the rotation speed and magnetosphere becomes soft.
- ✓ Corotation boundary is determined by the Alfven radius and there rotation speed.

KYUSHU UNIVERSITY