Statistical Study on Jovian Magnetospheric Response to Solar Wind Dynamic Pressure

<u>H. Kitagawa^{1,2}</u>, S. Kasahara², C. Tao³, T. Kimura², and M. Fujimoto²

¹University of Tokyo ²ISAS/JAXA ³Laboratoire de Physique des Plasmas, Ecole Polytechnique

Characteristics of Jovian Plasma Sheet

- Only High Psw Event are examined
- The number of events is small (9cases)
- Using the same SW propagation model, we investigate the magnetospheric response more statistically
 - Comparing Low Psw Event with High Psw Event
 - Also on Energetic Particles

-Tilt between magnetic pole and axis of rotation~10° -10 Hour Planetary Period Magnetotail Reconnection [Nishida 1983] - Energetic Particle Flux Enhancement [Kronberg+ 2012] Beams of Energetic Particles [Kronberg+ 2012] - Disturbance of Magnetic Field in North-South component [Vogt + 2010] North

[Kronberg, 2006]

Plasma Sheet Flapping

Enhancement

South

Do Br Have No Correlation with Psw?

- Definition: 2 days as 1 event
- Index is ratio of time (smoothed Br > 2.5nT) in each event
- No Correlation with Psw?

٠

٠

Statistical Analysis of Br

- Histogram of Br index distribution for High and Low Psw
- KS test is a hypothesis test rejecting the null hypothesis that populations of 2 samples are the same
- Confirmed that populations of high(>0.13nPa) and low(<0.03nPa) Psw is not the same by using KS test (99.3%)

Thresholds of Statistical Analysis

- Response of Br, B_{θ} and Flux to Psw
 - Significant correspondence if thresholds of low and high Psw are 0.03nPa and 0.13nPa
 - Significance probability is low if threshold of low Psw is higher than 0.03nPa

Beams of Energetic Particles Response to Psw?

Analysis of Beam Events

- It is statistically insignificant that beams responds to Psw
 - KS test significance probability is 78%
- Beams are frequently observed in the low Psw condition
- Inconsistent with the results for Br, B_{θ} and Flux ?

How can they be consistent ?

Discussion

- It is statistically significant that Br, B_{θ} and flux tend to respond to Psw
 - Events with high indices are seen under the condition Psw > 0.03nPa
 - $-\,$ Consistent with high Psw analysis by Tao et al., [2005] (Br and $B_{\theta})$
 - The first statistical analysis on the relation between flux and Psw in Jovian magnetosphere
- Reconnection have weak relation with Psw
- Observationally consistent with

conceptual model of reconnection driven by corotation

• Distant tail reconnection (Beam) is insufficient to observe B_θ disturbance and flux enhancement at the location of Galileo

Summary

- We conducted statistical study on the response of night side Jovian tail to the solar wind pressure
 - Analysis has been difficult due to the absence of in-situ solar wind monitor
 - We used MHD calculation instead
 - Galileo magnetospheric observations are examined with propagated solar wind data
- We confirmed that ${\tt Br, B}_{\theta}$ and flux respond to ${\tt Psw}$
 - 0.03nPa is the threshold
- Reconnection have weak relation with Psw
- Distant tail reconnection (Beam) is insufficient to observe B_{θ} disturbance and flux enhancement at the location of Galileo
 - High Psw is necessary in addition to Rx

[Krupp et al., 2004]