Latitudinal cloud structure in the Venusian northern hemisphere evaluated from VEX/VIRTIS with GCM

M. Kuroda¹, T. Kuroda¹, Y. Kasaba¹, P. Drossart², G. Piccioni³, K. Ikeda⁴, M. Takahashi⁵

¹Tohoku Univ., ²Observatoire de Paris, ³INAF-IAPS, ⁴JAMSTEC, ⁵Univ. Tokyo

The averaged latitudinal distributions of several characteristics of Venusian northern cloud were evaluated from the Venus Express/VIRTIS nadir observations. The characteristics examined were cloud opacity, cloud-top temperature, cloud-top altitude, and carbon monoxide under the cloud.

There are three characteristics related to the polar region clouds: (1) The cloud optical thickness at $65-80^{\circ}$ N is 1.5 times larger than that in the mid-latitudes. This feature suggests that the number of cloud particles is larger in polar regions, or the optical characteristics of cloud particles in polar regions are different. (2) The averaged cloud-top temperature decreases gradually from $0-40^{\circ}$ N (232 ± 2 K) to 70° N (223 ± 5 K) and then increases to the north pole (233 ± 6 K). In contrast, the averaged cloud-top altitude monotonically decreases from the equator (68.2 ± 1.6 km) to the north pole (58.3 ± 1.0 km). Both features suggest that the Venusian cold and hot polar structures are lower cloud-top regions. (3) The averaged CO mixing ratio under the cloud increases from the equator (16 ± 3 ppm) to 70° N (24 ± 5 ppm) and then decreases until 80° N (19 ± 5 ppm). This profile correlates negatively with the cloud-top temperature. Since CO under the cloud is transported from the upper cloud layer, the negative correlation suggests that the cold collar represents a downwelling region.

In addition, using a Venus General Circulation Model, we traced cloud particle motions and investigated the effects of circulation on these characteristics. The numerical results showed that (1) the cloud-top altitude monotonically decreases from the equator (67.3 km) to the north pole (59.3 km), and (2) the cloud-top temperature is approximately constant from the equator to 40° N (234 K), gradually decreases to 70° N (228 K), and then increases toward the north pole (242 K). These structures originate from the downwelling of Hadley circulation around cloud-top regions at high latitudes. These results suggest that the Venusian polar structures, the cold collar and hot dipole, are created by a decrease of cloud-top altitude in high latitudes due to atmospheric circulations.