EVOLUTION OF MARTIAN SURFACE ENVIRONMENT

Tomohiro Usui

Tokyo Institute of Technology & Lunar Planetary Institute

BLUE, RED & WHITE MARS

Dramatic climate change through the history...

White Ice <0.5 Ga??

Magma Ocean 4.5 Ga

Blue Ocean/Lakes ~4 Ga to ??

Red Desert Present

GEOLOGIC RECORD: *Morphology*

Fluvial Activity

By Mars Reconnaissance Orbitor

By Mars Global Surveyor

GEOLOGIC RECORD: *Mineralogy*

Red: clays, blue: sulfates, yellow: other hydrated minerals (Not ID)

By OMEGA/Mars Express [Bibring et al. 2006]

GEOLOGICAL & GEOCHEMICAL APPROACHES

- Unfold "integrated" historical records in rocks
- Mars is only the planet for which we have rocks samples!

Young basalts: ~0.2-0.6 Ga

Old cumulate : 4.1 Ga, w/ surface alteration 5

EVIDENCE FROM HYDROGEN ISOTOPES IN METEORITES FOR MASSIVE GROUND ICE ON MARS *Tomohiro Usui et al. (submitted)*

ATMOSPHERIC EVOLUTION & D/H RESERVOIRS

Significant D/H fractionation among martian volatile reservoirs

Atmospheric composition

isotope	Δ [terrestrial]	Lost to space
D/H	~5	60-74 %
³⁸ Ar/ ³⁶ Ar	1.3	50-90 %
¹³ C/ ¹² C	1.05-1.07	50-90 %
¹⁵ N/ ¹⁴ N	1.7	90 %
180/160	1.025	25-50 %

Jakosky & Phillips [2001]

D/H reservoirs on Mars

Atmosphere

surface water

Mantle

Modified after Usui et al. [2012]

MY STRATEGY & APPROACHES

 Constrain the histories of martian hydrosphere/atmosphere by tracing the evolution of hydrogen isotopic compositions recorded by martian meteorites

SAMPLES: Martian basalts

Martian basaltic meteorites

Interaction w/ surface components

Hawaii island

TARGETS: impact melt & Melt inclusion

Impact melt

- Post-erupted volatiles
- Surficial and/or atmospheric volatile reservoirs

Melt inclusion

- Pre-erupted volatiles
- Magmatic waters in the deep mantle/crust

LOW-CONTAMINATION, IN-SITU ANALYSIS

SIMS: Secondary Ion Mass Spectrometry

- Embedded in <u>liquid indium</u> while under vacuum
 Indium Al-holder
- Analysis under high-vacuum condition (<8x10⁻¹⁰ torr)

Cameca-6f at DTM, CIW

Usui et al. (2012, submitted), Kurokawa et al. (submitted)

ISOTOPIC RESULTS

NON-ATMOSPHERIC, INTERMEDIATE D/H WATER RESERVOIR

 Massive ground ice: Thickness of >30 m can preserve a δD value of <2000 ‰ over a geological extended period of time (~3×10⁹ year)

RADAR SOUNDER OBSERVATION

- Presence (?) of sub-surface ice in the northern lowlands
 - Low dielectric constant ($\varepsilon = \sim 3$) indicate pure water-ice

Dielectric map near the N-pole by Mars Express Mouginot et al. (2012)

CONCLUSIONS

 Mars has experienced the dramatic climate changes: from wet & warm to cold & dry.

• The historical evolution of martian surface environments are recorded in rocks (meteorites) as geologic/geochemical signs.

 Hydrogen isotope analyses of martian meteorites provide evidence for the existence of massive ground-ice that has existed relatively intact over geologic time.