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CO2 ice clouds and seasonal ice cap 
deposits in polar night 

Asahi Shimbun,13 May 2013 



Atmospheric environment on Mars 
Vertical structure 

• No stratosphere 
• Dust and water ice clouds: up to ~40 km height 
• CO2 ice clouds: higher than ~40 km, and polar night 

(lower than ~40 km) 

(Ref: on Earth) 

Mesosphere 



Condensation of CO2 on Mars 

• CO2 occupies 95.3 % of the Martian atmosphere. 
• The atmospheric temperature can go below the condensation 

level of CO2 (~145 K at 6 hPa), mainly in winter poles. 
• The CO2 atmosphere condenses in winter poles, which results 

in the formation of seasonal polar cap and large annual 
variance of pressure (~25 %).  

Annual change of surface pressure (Viking) 

[Tillman et al., 1993] 



Northern seasonal polar ice cap of CO2  

• Seasonal polar ice caps are known by ground-based 
telescopes since Herschel (18th century). 

• The shape of recessing northern seasonal cap is relatively 
circular, but with slight asymmetricity. 

• The cap accumulates up to ~1.2 m, and the elevation change 
is prominence in the north of 80° N. 

Elevation change of polar 
regions (MGS-MOLA) 

North polar cap 
(Hubble space telescope) 

[Cantor et al., 1998] 
[Smith et al., 2001] 



CO2 snowfall in north polar regions  

• The cloud echoes are observed in the north of 70° N below the 
altitude of 15 km. 

• There is a longitudinal dependence in the latitude of ~80° N, with a 
peak in 45°-90° E. 

• Maximum cloud particles size is estimated to 50-200 μm. 
• Simulated CO2 deposition is maximum in 0°-60° E in ~80° N. 

Cloud echoes (MGS-MOLA) 
Frequency Vertical distribution 

[Colaprete et al., 2003, 2008] 

Surface deposition rate 
of CO2 seasonal ice cap 
(NASA/Ames MGCM) 



CO2 snowfall in south polar regions  

[Hayne et al., 2014] 

Recent detailed studies with observation/simulation 
MCS Brightness temperature 

32μm 

MCS retrieved 
temperature/opacity 

(NASA/Ames MGCM) 
Surface deposition rate 

Ratio of snowfall to 
total ice deposition 

[Colaprete et al., 2008; 
Dequaire et al., 2014] 

• Seems to be more ‘choppy’ 
than the northern clouds. 

• Contribution of snowfall to 
the seasonal cap formation 
is very small (<10%). 

• Zonal structure changes 
seasonally…? 



CO2 snowfall in polar regions  

• There are signals of ‘dust’ in winter polar regions (higher than 70°), 
which are thought to be of CO2 ice clouds.  

• Polar CO2 ice clouds are peaked in ~20-40 km altitude. 
• The data is too sparse to detect the longitudinal dependence.  

(the details will be shown later) 

MRO-MCS (density-scaled opacity of dust) 
[McCleese et al., 2010] 



Questions 
• How is the CO2 snowfall simulated in the MGCM? 

Are the results consistent with the observations?  
• How does the atmospheric dynamics affect  the 

longitudinal dependence of CO2 snowfall? 
• Is the CO2 snowfall related to the deposition of 

seasonal ice cap, and changes of mass? 

[Cantor et al., 1998] [Tillman et al., 1993] 



About polar night CO2 ice clouds:  
from my recent publication 

 

Research Highlights,  
Nature Geoscience, May 2013 

On a local TV news 
(TBC), 8 June 2013 



Dynamical 
core 

DRAMATIC = Dynamics, RAdiation, MAterial Transport and 
their mutual InteraCtions 

CO2: Absorption and emission in the infrared 
wavelength (15μm, 4.3μm) and near-infrared solar 
absorption  (only LTE effects) 
Dust: Absorption, emission and scattering in 0.2-200μm 

Resolutions 

Surface 

Radiation 

Realistic topography, albedo, thermal inertia and 
roughness, deposition of CO2 and H2O/HDO ice 

Horizontal resolution of ~5.6°×5.6° (T21) 
 (grid interval of ~333km at the equator) 
69 layers with σ levels, the model top is at ~100km. 

CCSR/NIES/FRCGC AGCM 5.7b (MIROC 4.0) 
3-dimensional primitive equations, spectral solver 

DRAMATIC MGCM 

Tracers H2O/HDO vapor and ice, CO2 ice 

Current status 
[Kuroda et al., 2005-2013] 



• Standard observed opacity without global 
dust storm; 0.2-0.6 in visible, higher near 
the perihelion (northern autumn and early 
winter), zonally constant  

Dust distribution 

CO2 cycle scheme 
• Condensed CO2 ice falls with the 

gravitational sedimentation. 
• Thermal effects (exchange with latent 

heat and potential energy) and mass 
change (between CO2 atmosphere and 
ice) are considered. 

• The sedimentation velocity of the CO2 ice 
particle depends on its size and density. 

• The particle size of CO2 ice clouds is 
defined as a function of height (*), density 
is set to 1600 kg m-3. 

( )hzrzr z −= exp)( 00

rz0： Radius of particle at 0 
km height 
      (50 μm for CO2 ice) 
h： Scale height of particle 
      (20 km for CO2 ice) 
→ 1 μm at ~78 km height 

(*)  

• Supersaturation (constant rate of 1.35) is considered. 



CO2 ice cap thickness [kg m-2] 

Simulated seasonal changes of CO2 ice caps 
and atmospheric mass 

Surface pressure in comparison 
with Viking Lander 2 observations 



Simulated CO2 ice cloud distribution: comparison 
with MRO-MCS data 

• The signal of ‘dust’ (CO2 ice clouds) is seen between the altitude of 15-40 
km in MRO-MCS data, which is consistent with the MGCM simulation. 

• The MGCM simulated also the CO2 ice clouds below 15 km which MRO-
MCS does not detect, but the clouds in lower altitudes are consistent with 
the MGS-MOLA cloud echo observations. 

• The MGCM also simulates mesospheric clouds in northern midlatitudes. 

(Shade: dust data set) (Shade: CO2 ice clouds) 

Cloud echoes 
observed 

Cloud echoes 
(MGS-MOLA) 

Formula of mass mixing ratio 
(proportional to the density-

scaled dust opacity) 

(Ls=255°-285° averaged) 



Longitudinal dependence of CO2 snowfall (80°N,  
50Pa: ~25km altitude) 

• The formation of CO2 ice clouds is obviously along with the cold 
phases of eastward propagating planetary waves with zonal wave- 
number of  1 from baroclinic/barotropic instability (5-6 sols period). 

• Also the longitudinal dependence of CO2 ice cloud formation is 
large, with peaks in 60°-120° E and 90°-120° W before Ls~275°, 
while only in 60°-150° E in Ls~275°-295°. 

• We show for the first time that the planetary waves strongly 
modulate the CO2 snowfall. 

(Smoothed to be daily-averaged values) 



Longitudinal dependence of CO2 snowfall (80°N,  
225Pa: ~10km altitude) 

• The CO2 snowfall is still 
modulated by baroclinic waves, 
including the components with 
shorter periods (~3 sols).  

• The peak of longitudinal 
dependence moves to 0°-60° E 
(close to the cloud echo 
observations).   

(Smoothed to be daily-averaged values) 

Zonal WN=1 
(5-6 sols period) 

Zonal WN=2 
(~3 sols period) 

Structure of 
transient 

(baroclinic) 
waves 

[Banfield et al., 2004] 

Cloud echoes 
(MGS-MOLA) 

50Pa 

225Pa 

50Pa 

225Pa 



Longitudinal dependence of CO2 ice deposition on 
surface (80°N) 

• The CO2 snowfall is still 
modulated by baroclinic waves, 
including the components with 
shorter periods (~3 sols).  

• The peak of longitudinal 
dependence moves to 0°-60° E 
(close to the cloud echo 
observations).   

(Smoothed to be daily-averaged values) 

Zonal WN=1 
(5-6 sols period) 

Zonal WN=2 
(~3 sols period) 

Structure of 
transient 

(baroclinic) 
waves 

[Banfield et al., 2004] 

Cloud echoes 
(MGS-MOLA) 

50Pa 

225Pa 

50Pa 

225Pa 



CO2 ice clouds Vertical conditions of CO2 snowfall  

• It takes ~0.2 sols for CO2 ice clouds at 25 km altitude to fall to surface. 
• In the longitude region where the deposition rate is largest (30° W-60° 

E), ice particles formed up to 20 km can reach the surface. 
• In other longitude regions, the ice particles likely sublimate in the 

lower warmer atmospheric layers. 

Daily-averaged values, 1-sol 
interval between Ls=271°-274° 
(between dotted lines below) 

Supersaturated (cold) 



Summary 
• We showed that the formation of CO2 ice clouds occurs in the 15-40 

km altitudes of northern winter polar region (north of 70° N) from the 
MRO-MCS data. (below, MGS-MOLA has observed the cloud echoes) 

• The cloud formations are successfully simulated by the DRAMATIC 
MGCM, and showed that the cloud formations and ice cap depositions 
are strongly modulated by planetary waves (barotropic/baroclinic and 
stationary waves). 

• CO2 ice particles formed below ~20 km can  
reach the surface in certain altitude region  
(30° W – 60° E at 80° N where the maximum  
of the deposition occurs). In other longitudes, the ice particles are  
likely to sublimate depending on the phases  
of the transient waves below. 

• Given the regular nature of the transient  
planetary waves, this study indicates the  
possibility for the reliable forecasts of  
CO2 snow storms. 

0° lon 

Simulated CO2 
Snowfall at 80° N 



Other recent interesting topics 

2014/01/13 – 16 @ Oxford 
http://www-mars.lmd.jussieu.fr/ 
oxford2014/ 

Seminar by Dr. Marco Giuranna 
2014/02/10 @ Tohoku Univ. 



Rocket dust storms, katabatic jumps: 
Key of the vertical profile of dust? 

[Heavens et al., 2011] 

MCS observed vertical dust distributions in northern summer 

Theoretically-estimated profiles 
(first proposed by Conrath, 1975) 

• Recently Mars Climate Sounder first 
observed the vertical profiles of dust, 
but the structures are different from 
the theoretically-estimated (so-callled 
‘Conrath’) profiles which were used in 
GCM simulations for a long time. 

How the ‘detached’ layer appears? 



Rocket dust storms, katabatic jumps: 
Key of the vertical profile of dust? [Spiga et al., 2014] 

Rocket dust storm 
(vs terrestrial cumulonimbus) 

Katabatic 
jump 

• A mesoscale model 
simulates the features 
which may relate to the 
existence of  ‘detached’ 
layer of dust. 



Katabatic jumps, ‘sea breeze’: 
Key of polar layered deposits 

[Smith et al., 2013, 2014] 

North polar layered deposits 
(MRO-SHARAD observation) 

• Katabatic jumps 
also may affect to 
make the ice clouds 
together with the 
phenomenon like 
‘sea breeze’ on 
Earth.  



Water ice clouds/dust particle size 
distributions observed by MRO/CRISM 

Water ice (1.0, 2.0, 3.0 μm) Dust (0.5, 1.0, 1.5 μm) 

[Guzewich et al., 2014] 

• Distributions of different particle sizes of water ice and dust 
are detected from the observational data. 

Detected fractional representations 



Effect of water ice clouds on the dust 
distributions 

[Kahre et al., 2014] 

Simulations of 
dust distributions 
without (upper) 
and with (lower) 

water clouds 

• Water ice clouds enhance the 
circulation, not only by their 
radiative effects but also by 
contributions to change of the 
distributions of dust. 



Atmospheric temperature over and around 
Olympus Mons: MEx-PFS observation 

2km-altitude daytime 
temperature 

Sunlight 

Circulation 

[Wolkenberg et al., 2010] 

• Observed temperature fields over and around Olympus 
Mons indicate the atmospheric circulations around the 
mountain. 



• Katabatic flows, conio-cumulonimbus (rocket dust storm), 
etc. due to topographic effects, convections, etc… 

• Such small-scale features, as well as the microphysics and 
radiative effects of water ice clouds, affect the distributions 
of dust which strongly connects to the thermal features and 
circulations of atmosphere. 

• Gravity waves, though I didn’t mention in this talk, are also 
generated by such small-scale features. 

Future prospects 
Meteorological features of smaller scale (mesoscale) 

are becoming more and more important! 

Supposed approaches 
• More observations especially targeting the boundary layers 

(remote sensing, radio occultation, from landers) 
• Supports by GCMs with higher resolution 
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