Symposium on Planetary Science 2014, February 20, Sendai

Group-standing effects on upstream whistlers around the Moon and planetary bow shocks

Yasunori Tsugawa¹ Y. Katoh¹, N. Terada¹, H. Tsunakawa²+Kaguya-LMAG team

> ¹Dept. Geophys., Grad. Sch. Sci., Tohoku Univ.; ²Dept. Earth Planet. Sci., Tokyo TECH

SW interaction with solar system bodies

Upstream whistlers

- electromagnetic waves ~1 Hz ("1 Hz wave")
- mostly left-hand polarized (LH)
- generally observed upstream of solar system bodies
- Earth: *Heppner et al.*, 1967; *Fairfield*, 1974, etc.
- Mercury: Fairfield and Behannon, 1976; Orlowski et al., 1990
- Venus: Orlowski and Russell, 1991; Orlowski et al., 1993
- Mars: Brain et al., 2002
- Saturn: Orlowski et al., 1992
- Moon: Farrell et al., 1996; Nakagawa et al., 2003
- Uranus: Smith et al., 1989, 1991
- IP shock: Tsurutani et al., 1983
- comet: Tsurutani et al., 1987
- similar spectral shape under different conditions
- propagate as far as $\sim 30 R_E$

Narrowband upstream whistlers (NR)

Possible sources of upstream whistlers

Upstream local instabilities?

- Reflected ion beams [Hoppe et al., 1981; 1982]
- Large pitch angle electrons backstreaming from the shock [Sentman et al., 1983]
- Temperature anisotropic $(T_{\perp}/T_{\parallel}\gg 1)$ proton beams [Wong and Goldstein, 1987]
- Gyrating isotropic proton beams [Wong and Goldstein, 1988; Hellinger et al, 1996]
- Electron temperature anisotropies $T_{\perp}/T_{\parallel} > 1$ [*Mace*, 1998]

By or within shock itself?

- Field-aligned $T_{\perp}/T_{\parallel} > 1$ electron beams toward magnetosheath within the shock ramp [*Tokar and Gurnett*, 1985]
- Reflected protons which gyrate back to the shock [Hellinger and Mangeney, 1997]
- Loss cone or nongyrotropic electron distributions [Veltri and Zimbardo, 1993]
- Cross-field drift at the shock [Orlowski et al., 1995]
- Shock front perturbations [Baumgartel et al., 1995]
- Nonlinear interaction of non-stationary shock front [Balikhin et al., 1997; 1999]

What are required for generation? \leftrightarrow for observation?

Spectral formation of NR

Modification of spectral density

SW frame
$$P(\omega, \delta\omega) = \int_{\omega}^{\omega+\delta\omega} S(v)dv = \langle S(\omega) \rangle \delta\omega$$

invariant for a Doppler-shift transformation,
 $\omega' = \omega + \mathbf{k} \cdot \mathbf{V}_{sw} = \omega - kV_{sw}\cos\theta_{kx} = \omega - k_xV_{sw}$
[e.g., $Orlowski \ et \ al.$, 1995]
 $sc \ frame P'(\omega', \delta\omega') = \int_{\omega'}^{\omega'+\delta\omega'} S'(v)dv = \langle S'(\omega') \rangle \delta\omega'$

 $\downarrow \\ \text{observed spectral density is} \\ \text{modified by } \delta\omega/\delta\omega' \sim V_{g,x}/V'_{g,x}$

Modification of spectral density

• propagated upstream $(V'_g > 0) \rightarrow$ nearly stagnated

$$\begin{cases} V_g = -V_{SW} & group-standing condition \\ \omega' = \omega - kV_{sw} \cos \theta_{kx} & Doppler shift of frequency \\ D(\omega, k, \theta_{kB}, n, B) = 0 & whistler-mode in cold plasma \\ B = 5 nT, n = 5 cm^{-3}, V_{SW} = 400 km/s & typical SW parameters at 1 AU \end{cases}$$

Upstream whistlers (NR) of other planets

10 Mercury Venus Mars Earth Saturn fobs (Hz) 0.1-0.2 2.5 - 3.01.0 - 1.80.8 - 1.50.5 - 0.8 θ_{kx} (deg) 60 - 700 - 378-30 9-36 21 - 38Frequency (Hz) ₽ θ_{kB} (deg) 7-53 5 - 515 - 5719 - 4040-60 heliocentric 0.39 0.72 1.52 9.55 1 distance (AU) 5.48×10⁻² n (/cm³) 33.37 10 5 2.15 V_{sw} (km/s) 400 400 400 400 400 0.1 B (nT) 25.3 8 5.0 2.8 0.4 Mercury Venus Earth Mars Saturn input parameters $\pm 10\%$ $n(r) = n_0 \frac{r_0^2}{r^2}$ $V(r) = V_0$ $f_{obs} \approx$ estimated f_{gs} even in different conditions $B(r) = \sqrt{B_r^2 + B_{\varphi}^2} = B_0 \sqrt{\left(\frac{r_0^2}{r^2}\right)^2 + \left(\frac{\omega_s r_0^2}{nr}\right)^2}$ Observed frequency is determined

observed values [Orlowski et al., 1995; Brain et al., 2002]

[Meyer-Vernet, 2007]

<u>Observed frequency is determined</u> <u>by group-standing effect</u>

\Rightarrow NR is group-standing, and its spectrum is essentially formed by the effects

Broadband upstream whistlers (BR)

Similarities & Differences

	NR (Geotail)		NR (Kaguya)	BR (Geotail)		BR (Kaguya)
<u>occurrence</u>	0.32%		0.51%	0.63%		0.50%
<u>frequency</u>	peak: -1.60.8 Hz	\sim	peak: -2.11.0 Hz	center: 2.1–3.7 Hz	<	center: 3.1–6.8 Hz
intensity	0.092–0.98 nT ² /Hz	≲	0.17–2.6 nT ² /Hz	0.036–0.28 nT ² /Hz	>	0.013–0.078 nT ² /Hz
$\underline{\theta_{Bx}}$	small (19°–44°)	\sim	small (19°–40°)	large (64°-83°)	\sim	large (46°–77°)
$\underline{\theta_{kx}}$	small (13°–36°)	≲	small (23°–58°)	large (51°-79°)	\sim	large (46°-77°)
$\underline{\theta_{kB}}$	parallel (21°–39°)	<	oblique (32°–66°)	parallel (17°–33°)	<	oblique (47°–78°)

- NR & BR are possibly the same source waves group-standing \rightarrow NR, not group-standing \rightarrow BR \Rightarrow general physics through the solar system
- near Earth's bow shock: <u>lower frequency</u>, <u>larger amplitude</u>, <u>more parallel propagation</u> than near Moon
 ⇒ dominant energy sources are different
 e.g., bow shock: ion beam instability, Moon: modified two stream instability

Summary

We proposed the group-standing effects to explain upstream whistlers.

- Propagating whistler-mode waves near lower hybrid frequency are observed as NR when they are group-standing, and as BR when they are not group-standing.
- Lower frequency, larger amplitude, smaller θ_{kB} are required for the wave generation near bow shock compared with near the Moon.

↓ The modification of the wave spectra observed in a moving plasma should be considered to understand accurate generation processes.