The Circumpolar Stratospheric Telescope – FUJIN – for Observations of Planets

Atsunori Maeda, Makoto Taguchi: Rikkyo Univ. Kazuya Yoshida, Yuji Sakamoto, Toshihiko Nakano, : Tohoku Univ. Yasuhiro Shoji: ISAS/JAXA

Yukihiro Takahashi, Jumpei Nakamoto, Masataka Imai, Makoto Watanabe, Yuki Goda: Hokkaido Univ.

1. Science Objective of FUJIN

The FUJIN project aims at studies of the planetary atmospheres and plasmas by observations using an optical telescope lifted up to the polar stratosphere by a scientific balloon.

2. FUJIN-1 Experiment in 2013

Flight Window May/June in 2013

Location

Taiki Aerospace Research Field, Hokkaido, Japan

System function test and observation of Venus

• Result

Unfortunately due to a failure in the bus system provided by JAXA the FUJIN-1 experiment was canceled. Since its functions have been thoroughly checked through the various tests on the ground and in a vacuum chamber, it was decided that the FUJIN-1 experiment was closed to proceed the next step.

Fig. 1 The FUJIN-1 gondola prepared for launch at TARF.

3. FUJIN-2 Experiment in 2015

- Flight Window April/May in 2015
- Place
- SSC/ESRANGE, Kiruna, Sweden
- Target Planets Venus, Jupiter and Mercury
- Observation Wavelengths Venus

365 nm and 418 nm

Jupiter

889nm and 750nm

Flight Plan

FUJIN-2 will be launched at ESRANGE operated by SSC and recovered in the large impact area north of Kiruna after one or two days flight in the turn-around

Launch area

Fig. 2 Location of ESRANGE

and bird-view of launch

5. FUJIN-2 Optics

	Table 1. Optics of FUJIN-2	
	Telescope	Cassegrain with Nasmith focuses
	Aperture	400 mm
	Filters	10 pcs
	Detector	CCD camera

Star sensors with wide and narrow field-of-view guide the telescope to a target planet. A tip-tilt mirror installed in the optical path corrects guiding errors of the telescope mount to stabilize the image at the center of field-of-view. Observation wavelength is selectable

ig. 4 The telescope changing filters in a wheel. for FUJIN-2.

6. Scientific Purposes

- Venus
- →Dynamics of Venusian upper atmosphere including super-rotation by tracking cloud pattern seen in the ultraviolet region.
- →Chemistry, lightening, airglow and aurora.
- Jupiter (Option)
- →Cloud physics and dynamics of the Jovian atmosphere
- →Satellites and gas and plasma emitted from them
- Mercury (Option)
 - → Formation mechanism of sodium atmosphere and tail

4. FUJIN-2 System

Two industrial PCs control sub-sytems of FUJIN-2. Data are downlinked and commands are uplinked through the e-link system provided by SSC/ESRANGE.

Reference

Shoji et al., Development of the Balloon born Telescope for Planets -FUJIN-1-, To be published in JAXA-RR, 2014.

7. FUJIN-3 Experiment

- Fujin-2 will be launched during the turn around period while the wind direction in the stratosphere changes.
- During the summer season the easterly wind is dominant in the stratosphere. A balloon can fly along a circle in almost constant latitude back to the launch site. FUJIN-3 will try observation for two weeks and a few days by a circumpolar flight.

Fig. 5 A star map that shows positions of the planets and the Sun at FUJIN-2 observation.

Fig. 6 A predicted trajectory of circumpolar flight during summer.

8. Future Plan

The following developments are being considered after FUJIN-3:

- ·utilization of a super-pressure balloon for longer flight,
- ·a meter-class telescope,
- and a mobile gondola that can move to the center of polar vortex where more stable environment is expected.