First Light of Tohoku 60-cm Telescope at Haleakala Observatory in Hawaii

Masato Kagitnai<sup>1</sup>, Hirom Nakagawa<sup>1</sup>, Takeshi Sakanoi<sup>1</sup>, Yasumasa Kasaba<sup>1</sup>, Jeffry Kuhn<sup>3</sup>, Joseph Ritter<sup>3</sup>, Shoichi Okano<sup>3</sup>, Svetlana Berdyugina<sup>4</sup>, Andrei Berdugina<sup>5</sup>

<sup>1</sup>Tohoku Univ., <sup>3</sup>IfA/Univ. Hawaii, <sup>4</sup>KIS/Germany, <sup>5</sup>Turku/Finland

Feb17,2015 Symposium on Planetary Science 2015

### Purpose of Tohoku 60-cm (T60)

Flexible - Conjugated operations with space missions & large telescopes

Continuous monitoring - Temporal variabilities in diurnal, seasonal solar cycle

Unique instrument – including IR and visible high-resolution spectroscopy

- Mid-Infrared LAser Heterodyne Instrument (MILAHI): 8–10μm, λ/δλ ~ 10<sup>6-7</sup>
- Filter Imager / Spectrograph with coronagraph:  $0.4-0.9\mu m$ ,  $\lambda/\delta\lambda \sim 1000$ , FOV~10' /  $\lambda/\delta\lambda \sim 50000$ ,
- Double image high-precision polarimeter (Dipol-2): BVR, high-precision polarimetry (DoLP~10<sup>-6</sup>)

[Future plan]

- Near-Infrared Echelle spectrometer (ESPRIT): 1-5 $\mu$ m  $\lambda/\delta\lambda$  ~ 20000

### T60 Opening Ceremony - 8 Sep. 2014



### Tohoku 60-cm Telescope (T60)

Tab. 1 Specifications of T60

| Entrance Pupil<br>Diamter | 600 mm                                                                                                  |  |  |
|---------------------------|---------------------------------------------------------------------------------------------------------|--|--|
| Focal length              | 7200mm (F12) at Cassegrain (Cs)<br>14400mm (F24) at Coude (Cd)                                          |  |  |
| Instruments /<br>Foci     | Dipol2 / Cs<br>MILAHI / Cd<br>Coronagraph / Cs+Cd<br>Filter Imager / Cs+Cd<br>Visible Spectrograph / Cd |  |  |

- Remote control
- 85%: Tohoku, 15%: IfA/UH



## Ultra high-resolution spectroscopy of Martian atmosphere --- MILAHI (next presentation)

High-dynamic range observation close to planets

High-precision Polarimetry of exoplanets

Ultra high-resolution spectroscopy of Martian atmosphere --- MILAHI (next presentation)

### High-dynamic range observation close to planets

High-precision Polarimetry of exoplanets

#### Jupiter plasma torus

by Spencer /



Escaping neutral and plasma

Simulated ion escape from Mars by Terada

# High-dynamic range observation close to the planets

Continuous monitoring of faint emissions from plasma and neutrals in planetary magnetosphere helps us to understand dynamics and energy balance, e.g. Jupiter's plasma torus, Saturn's Enceladus torus, and so on.

When we observe faint emissions close to the planets, diffracted side-lobes and scattering prevent us from getting high S/N measurements

### **Dynamic range of targets**

Tab. 1 Brightness of targets and contamination sources in visible (0.4-1um)

| Targets                       | Brightness of<br>targets    | Brightness of bright objects       | Brightness ratio<br>Bright obj. / target | Separation from bright objects |
|-------------------------------|-----------------------------|------------------------------------|------------------------------------------|--------------------------------|
| Jupiter plasma torus          | S+, S++<br>500 R            | 50MR/nm                            | 10 <sup>5</sup>                          | 50-100"                        |
| Enceladus torus               | O, H <sub>2</sub> O+<br>5 R | 20 MR/nm (Ring)<br>15 MR/nm (Disk) | <b>&gt;10</b> <sup>6</sup>               | 5" from Rings<br>15" from disk |
| Escaping spices from<br>Venus | CO+<br>1-100 R              | >500/nm MR                         | <b>&gt;10</b> <sup>6</sup>               | 10-100"                        |





Fig. Diffraction by secondary support structure

Fig. Circular aperture diffraction (D=600mm,  $\lambda$ =650nm)

### Reducing diffraction using a Lyot stop

#### Entrance pupil image



Fig. Model calculation of diffraction pattern using an occulting mask and a Lyot stop

### Advantage of Lyot stop



Fig. Top left: image w/o Lyot stop, Top right: image w/ Lyot stop

An Lyot stop reduces - axisymmetric diffraction by factor of 2-3, as well as

- cross-shaped diffraction by order of 1

at a distance of 30" apart from center of bright object.



Fig. Occulting masks in the turret

### Application for Jupiter plasma torus observation

#### w/o Lyot stop



#### w/ Lyot stop



Fig. [SII] 6716A image of Jupiter plasma torus. left: w/o using Lyot mask, right: w/ using Lyot mask. Color scale is adjusted using Jupiter disk brightness.

## Preliminary result of Jupiter plasma torus observation





Fig. a series of [SII] 6716A images of Jupiter plasma torus on Dec. 2014 – Jan. 2015. Exposure time is 20-min. 2x2 binned (~1"/bin).

## Ultra high-resolution spectroscopy of Martian atmosphere --- MILAHI (next presentation)

High-dynamic range observation close to planets

**High-precision Polarimetry of exoplanets** 



### Haleakala 2m telescope (PLANETS, Polarized Light from Atmospheres of Nearby ExtraTerrestrial Systems)

-Collaboration with IfA/UH and KIS(Germany), - First light: end of 2016 (fastest case)



## Summary

- T60 was installed on Sep. 2014 at Haleakala Observatory in Hawaii.
- MILAHI (λ/δλ~10<sup>6</sup>, 8-10µm), Visible Imager and Spectrograph with Coronagraph (λ/δλ~10<sup>3</sup>~10<sup>5</sup>, 0.4-0.9µm), and Dipol2 (DoLP~10<sup>-6</sup>, BVR) have gotten first-light fed to T60.
- We are starting
  - Jupiter observation using Visible Imager with Coronagraph for support observation of HISAKI/EXCEED.
  - Martian observation using MILAHI from March through September 2015 for the monitor of lower atmosphere just below MAVEN observations.
  - Exoplaents observation using Dipol2