Analysis of the polar oval of Venus using VMC images

K. Muto (Univ. Tokyo) and T. Imamura(ISAS/JAXA)

Polar oval

- Polar oval is a circular structure observed at least near the south Pole in visible and ultraviolet wavelengths.
- Since the oval is visible only on the dayside, its whole shape has been unknown. The mechanism producing the oval is not understood.
- We reconstruct the whole shape of the oval and study its variability.

Data set

- We used images taken by VMC on Venus Express. The images have been projected onto the longitude-latitude coordinate of Venus and correction for viewing geometry was performed based on Lambert law by using the Akatsuki Level-3data processing pipeline.
- Analysis period : 2007/09/02~2013/09/09

Spectral responses of VMC channels

(Markiewicz et al. 2007)

Estimation of the zonal advection period

Orbit number 1840

The period of rotation corresponding to the

(Limaye et al. 2007)

Images are shifted eastward based on the estimated zonal advection period of 3 days.

Time change of Polar oval (orbit number 801~875)

Further photometric correction for removing darkening near the terminator

To clearly observe the shape of the oval, the remaining darkening near the terminator is removed by subtracting a liner function fitted to the latitudinal variation of the brightness.

Parameters characterizing the shape of the oval

Although the limited longitudinal coverage in each image introduces errors in the estimation of r_{max} and r_{min} , zonal advection with a period of 3.5 days allows evaluation of long-term changes.

- Maximum(r_{max}) and minimum(r_{min}) distances between the oval and the Pole in each image are chosen as the parameters characterizing the oval shape.
- r_{max}/r_{min} represents the index the oblateness.
- \blacktriangleright r_{max} and r_{min} are determined visually.

Time changes of r_{max} and r_{min}

Days after April 20,2006

- Changes of oval in 2007/09/02~2013/09/09
- r_{max} and r_{min} show significant temporal changes with timescales of hundreds of days.

Time changes of r_{max}/r_{min}

The ratio changes with time scales of hundreds of days.

Spectral analysis of temporal evolution

- Lomb-Scargle method allows us to obtain power spectra from unevenly sampled data with data gaps.
- This method is equivalent to least-squares fitting of sine and cosine functions to the data.

Temporal evolution of the spectrum

- The dominant period (100-400 days) changes with time and does not coincide with a Venus year (255 days), the rotation period(243 days) and a Venus day (117 days).
- Self-exciting mechanism rather external forcing is suggested.

• The peaks found in r_{max}/r_{min} are a combination of those of r_m and r_{min} .

Summary

- The whole shape of the polar oval was revealed for the first time using Venus Express/VMC visible images.
- The shape of the oval was found to be changing over time between elongated shape and nearcircular shape.
- The period of the variation of the oval shape is variable. It does not seem to coincide with a Venus year, the rotation period and a Venus day, suggesting a self-exciting mechanism.