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Abstract: 

We discuss characteristics of whistler-mode chorus emissions in planetary magnetospheres, based 

on results of recent simulation studies. A series of simulations revealed dependencies of the spectral 

characteristics of chorus on the number density of energetic electrons [Katoh and Omura, JGR 

2011] and on the inhomogeneity of the background magnetic field [Katoh and Omura, JGR 2013]. 

The simulation results showed that the wave amplitude of chorus tends to decrease for the case of 

small magnetic field inhomogeneity, because the threshold wave amplitude in generating chorus 

becomes small. While the wave amplitude of chorus is relatively small in the Jovian magnetosphere 

than that in the terrestrial magnetosphere, this difference can be explained by the relationship 

between the chorus intensity and the magnetic field inhomogeneity. 

In this presentation, we show our future plan of the cross-reference simulations for the investigation 

of chorus in planetary magnetospheres. In the cross-reference simulations, the range of the variation 

of the magnetic field inhomogeneity in the inner Jovian magnetosphere will be investigated by 

MHD simulations, and then the spectral characteristics of chorus under the reproduced 

magnetospheric setting will be studied by electron hybrid simulations. Our cross-reference 

simulations will provide important clues in understanding the generation mechanism of chorus and 

the role of chorus in the relativistic electron acceleration process occurring in planetary 

magnetospheres, by comparing with the observation results of Jovian chorus by Galileo spacecraft 

[e.g., Katoh et al., JGR 2011] as well as chorus in the terrestrial inner magnetosphere. 
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Whistler-mode chorus in the terrestrial magnetosphere

[Santolik et al., 2008]

[Summers et al., 1998]

CLUSTER
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Chorus in planetary magnetospheres

Fig: Typical example of 
chorus emissions observed 
by Cassini/RPWS during 
injection events in Saturn’s 
magnetosphere
[Hospodarsky et al., JGR 2008]

SATURN

JUPITER

Fig: Chorus emissions observed by 
Galileo in the equatorial region of 
the Jovian inner magnetosphere

[Kurth et al., PSS 2001]
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Purpose of the present study

Understanding properties of chorus generation process

We conduct a series of electron hybrid simulations of the 
chorus generation by changing magnetic field inhomogeneity 
and number density of energetic electrons

We study spectra of reproduced chorus by comparing with 
theoretical estimations and observations
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Basic equations: Electron Hybrid model

Cold electrons are treated as a fluid
energetic electrons are treated as particles

[e.g., Katoh and Omura, JGR 2004, GRL 2007]

6



Outer radiation belt

Inner radiation belt Chorus generation region

Injection of
seed electrons

Simulation model & initial settings

Fig: Schematic illustration of radiation belts

Magnetic equator
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Case 1: Different number density of energetic 
electrons at the magnetic equator 
(corresponding to different linear growth rate)

Case 2: Different magnetic field inhomogeneity 
with the same property of energetic electrons at 
the magnetic equator

Initial conditions for the study of 
properties of chorus generation
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Case 1: number density of energetic electrons

Run 1: Nh +20%
Run 2: Nh +10%
Run 3: Nh = 8x10-4 Ncold

Run 4: Nh -10%
Run 5: Nh -20%

Linear growth rates for Run 1-5

We conducted simulations under the 
settings of different linear growth rates

Fig:
(cf. Xiao et al., 1998)
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Chorus generation 
reproduced in Run 3
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Nh = 8.8� 10�4N0Nh = 9.6� 10�4N0

Nh = 7.2� 10�4N0 Nh = 6.4� 10�4N0

11

Case 2: Magnetic field inhomogeneity
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Simulation results with different inhomogeneities
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Comparison of theories and results of Case 2 
(different magnetic field inhomogeneity)
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Summary of simulation results: Case 1

Magnetic field inhomogeneity
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Summary of simulation results: Case 2
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Properties of chorus generation
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Planning of “Cross-reference” simulations

Density and magnetic field inhomogeneity

Distance from the equator

Electron acceleration
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Jovian magnetic field inhomogeneity:
MHD/empirical model comparison
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We studied properties of the chorus generation in planetary 
magnetospheres based on the recent simulation results

Chorus emissions are generated when the wave amplitude 
exceeds the threshold wave amplitude for chorus generation

The magnetic field inhomogeneity controls threshold

For the case of large inhomogeneity, chorus become intense

For the case of small inhomogeneity, number of rising tones 
will be generated due to the small threshold, resulting in 
hiss-like emissions

These properties should be evaluated by further numerical 
experiments by “cross-reference” simulations, by in situ 
measurements of CLUSTER, THEMIS, VAPs, and forthcoming 
ERG satellites, and by observations at ground stations

Summary
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