

Symposium on Planetary Science 2017 @ Tohoku U., Feb. 20-22, 2017

Near-Infrared Hyperspectral Imager NIRS4/MacrOmega on MMX

<u>T. Iwata</u>^{1*}, T. Sakanoi², H. Nakagawa², J-P. Bibring³, V. Hamm³, C. Pilorget³, T. Nakamura², S. Aoki⁴, S. Crites¹, Y. Kasaba², and NIRS4 Team

¹Institute of Space and Astronautical Science (宇宙研), JAXA, ²Tohoku University (東北大), ³Institut d'Astrophysique Spatiale, Université Paris-Sud, ⁴Institut d'Aéronomie Spatiale de Belgique. * 岩田隆浩, iwata.takahiro@jaxa.jp

Abstract (1/2)

The Martian Moons Exploration (MMX) is a probe which will be launched by the Japanese launch vehicle H-III and will navigate the quasi satellite orbit of Phobos, and will make a fly-by of Deimos. **NIRS4/MacrOmega** is an imaging spectrometer in the wavelength range of **0.9 to 3.6 µm** which is one of the candidate instruments to be installed on the MMX spacecraft. It is based on MicrOmega on the ExoMars Rover and Hayabusa2 MASCOT and modified as a hyper-spectral imager with spectroscopic function provided by an **Acousto-Optic Tunable Filter (AOTF)**.

MMX aims to elucidate the evolution of our solar system by investigating the migration process of primitive materials in the early stage. NIRS4/MacrOmega will observe hydroxide or hydrated mineral absorptions on **Phobos and Deimos** in the wavelength of 2.7-3.2 μ m. By analyzing the shape of the spectra, we will distinguish between water in hydrous silicate minerals, water molecules, and water ice particles. NIRS4/MacrOmega will also try to detect the absorption by organic matter in the wavelength range of 3.3-3.5 micrometers. These results will support efforts to answer the question of the origin of the Martian satellites, and identify whether they are satellites formed by a giant impact or asteroids captured by Mars.

Abstract (2/2)

NIRS4/MacrOmega will observe **Phobos** to survey the **sampling site** before sampling, to investigate the sampling site precisely at the touch-down mode, and to make global mapping. Global mapping of Phobos to select prior areas and landing sites will be performed on the quasi satellite orbit at 100 to 200 km in altitude. Precise mapping for candidate landing sites will follow at about 20 km in altitude. We will also perform high-resolution observation for selected areas at the orbit lower than 10 km, and precise observations of blue and red regions at the Mars-Phobos Lagrangian points 1 and 2. In the touch down phase, we will observe the sampling site at full wavelength at altitudes from 20 km to 1 m. Observations for **Deimos** will be basically executed from the fly-by orbit, and they are examined to be made at the near circular orbit.

NIRS4/MacrOmega will also observe the **Atmosphere on Mars** from the orbit beside Phobos, which can provide a global imaging toward Mars with high temporal resolution. We will derive column density of water vaper and ice cloud by retrieval methods. We will also obtain surface pressure of CO_2 and column densities of CO, *etc.* to elucidate the water cycle in the Martian environment.

Target wavelength

Phobos and Deimos

Materials on Phobos / Deimos	λ (μm) [resolution]
Hydroxide minerals	2.7 - 2.8 [0.02]
Hydrated minerals	3.0 - 3.2 [0.02]
Organics (linear chain structure)	3.3 - 3.5 [0.02]
Reflective Cont.	0.9 - 3.6 [0.02]
Radiation (temperature)	3.2 - 3.6 [0.02]

Mars atmosphere

Atmosphere on Mars	λ (µm) [resolution]	
H ₂ O	2.50 - 2.65 [0.003]	
Pressure (CO ₂ absorption)	1.90 - 2.20 [0.003]	
Dust / aerosol amount (CO ₂ abs)	2.65 - 2.90 [0.003]	P CO ₂ -ice Cloud Dust H ₂ O-ice Cloud
Dust / aerosol: size & n (cont.)	0.90 - 3.60 [0.02]	2.0 2.5 3.0 3.5 Wavelength[micron]
[Others] O ₂ (1.27μm), CO (2.3μm), H ₂ O-ice (~3.5μm)		⇒ 0.9 - 3.6 μm

Wavelength Selection for Mars

In order to achieve spatial & temporal resolution, we need to restrict the scanned wavelength channels due to FOV-drift.

Fig. Synthetic spectrum of Martian atmosphere between 1.6 and 3.8 micron (20cm⁻¹ res., 2cm⁻¹ sampling).

<i>Tab. Selected wavelength channel of atmospheric compounds of interest.</i>	Molecule	H ₂ O	H ₂ O Cloud
	λ(μm)	2.5-2.65	3.3-3.6
	N. Channel	8	2
	Precision	1 pr-µm	Δτ=0.1

Strategy for Mars mapping

Operation orbit and subjects

target	orbit	subjects	S/N
100 km20 kmPhobosLow (TBD km)L1, L2-point20km → 1m → 20km *	<u>Global mapping</u> of Phobos to select priority areas and landing sites	>100	
	20 km	Precise mapping for <u>candidate landing</u> <u>sites</u> , Precise mapping for <u>selected areas</u>	>300
	Low (TBD km)	High-resolution observation for selected areas	>100
	Precise observations toward <u>blue (L1) &</u> <u>red (L2) region</u> , calibration for phase angle	>100	
	$20km \rightarrow 1m$ $\rightarrow 20km *$	Precise observations toward sampling sites *) full wavelength at $40 \rightarrow 10m$	>100
Deimos	Fly-by	Semi-global mapping of Deimos	>100
Mars atmosphere Phobos C	Phohos OSO	Global mapping and monitoring to select proper materials and areas	>300
	Phopos QSU	<u>Precise</u> observations toward selected areas, such as Tharsis, Arbia Terra, etc.	>300

Tentative Profile for descending sequence

Phase	ΔΤ	altitude	λ
1) Initial ΔV for Descent	1min	20km	
2) Ballistic Trajectory-1	60min	20km→10km	Selected
3) TCM (Trim Correction Mnv.)	1min	10km(TBD)	
4) Ballistic Trajectory-2	30min	10km→1km	Selected
5) Stop-∆V	1min	1km	
6) Lateral Position/Velocity Correction	10 ~ 60min	1km	Selected
7) Vertical Descent	20min	1km→50m	Full
8) TM Separation	1min	50m→40m	
9) 6 DOF (degree of freedom) Control	20min	40m→10m	Full
10) Hovering	5min	10m	Selected
11) Free Fall	5min	10m→1m	Selected
12) Touch Down	TBD	1m	Full x2

Imaging methods of VIS/NIR spectrometers

point/slit spectrometer (1D/2D-sensor)

- scanning for 2D-space
- simultaneous for wavelength
- <u>Grism</u>, Grating, Prism, or LVF (Linear Variable Filter)

Hyperspectral Imaging

- simultaneous for 2D-space
- scanning for wavelength
- AOTF(Acousto-Optic Tunable Filter)
- or LCTF (Liquid Crystal Tunable Filter)

Comparison of MacrOmega to NIRS3

item	MacrOmega	NIRS3 (*)
Spacecraft	ММХ	Hayabusa2
Spectroscopic methods	AOTF	grism
Sensor	2D HgCdTe sensor	1D InAs sensor
λ	0.9 - 3.6 μm	1.8 - 3.2 μm
FOV	6 deg (256 x 256 pix)	0.11 deg
Fno	6	-
Area , resolution (@20km alt.)	2.1 x 2.1 km, 8.2m/pix	40m/pix
Beam diameter	15 mm / (20 mm :op.) at AOTF	35 mmф aperture
Throughput	0.15	0.6-0.9
Exposure time for S/N=100 (†)	298 to 410 / 224 to 307 ms	~110 ms (@2.7μm)
Δλ	Δσ=20cm ⁻¹ ⇒ Δλ=2nm @1μm, Δλ=8nm @2μm, Δλ=24nm @3.5μm	$\Delta\lambda$ =18nm

*) Iwata et al. (2017), Space Sci. Rev., doi:10.1007/s11214-017-0341-0.

+) Values are depending on the wavelength characteristics. Values of AOTF are tentative.

A conceptual block diagram of NIRS4:MacrOmega

Functional boundary and requirement for MDP and MacrOmega

MDP/NIRS4-softwase	MacrOmega/CPU
MDP/NIRS4-softwase <control transmission="">- To transmit CMD from COM to MacrOmega To transmit TLM from MacrOmega to COM.<data acquisition="">- To store and transmit the data between MacrOmega, DE/REC,and COM To select data from MacrOmega by considering index andtransmit to COM as real-time data during the special events.<data calculation="">- To cut and restore the data-pixel designated by wavelength and</data></data></control>	MacrOmega/CPU <control instruments=""> - To control CRYO. - To set the frequency and status of the AOTF. - To turn on/off CALIB. - To control HTR. - To slue the SCAN. <data acquisition=""> - To acquire the data with designated parameters.</data></control>
 by spatial region. To execute binning by wavelength and by spatial region. To make thumbnails by using spatially binned data. To integrate the data obtained at the different time, which needs to consider the difference of attitudes. To calculate the color ratio of amplitude between two data. To select the data which satisfy designated conditions. To compress data. 	<data calculation=""> - To subtract dark signals from sky signals To calculate average, maximum, minimum, and variance values To execute the spatial binning To compress data.</data>

Major requirements and optional cases

- Baseline: 15mm-AOTF far-field optics 1-D scan mirror
- Optional cases:
 20-mm AOTF
 near-field optics
 2-D scan mirror

Table)NIRS4/MacrOmega mass

Component case	Mass [kg] (*)
nominal (15mm-AOTF)	5.00-6.00
fully-optional (20mm-AOTF, near-field, 2-dimensional scan)	6.90-8.28

*) nominal to +20% margin values.

Power consumption (*)		
cooling &	acquisition	processing
pointing	& pointing	
28.8	42.0	12.0
37.2	50.4	12.0
	Pow cooling & pointing 28.8 37.2	Power consumptioncooling & acquisitionpointing& pointing28.842.037.250.4

Table)NIRS4/MacrOmega power consumption

*) including 20% margins.