earch html

 計算性能 AFES (ベクトル型並列計算機のためのAGCM) ES2 (Earth Simulator、現在ES3)に最適化 火星でT639L96解像度の計算実績(Takahashi et al.) グリッド間隔-11 km (1920 × 960 grids with 96 layers) 						
ノード数	64ノード	火星高解像度計算結果の例				
ベクトル化効率	99.4%	(渦度分布)				
並列化効率	99.8%					
CPU時間	1火星日/~4時間	Year 1, Ls = 200.1 degrees, 6.0 hour vorticity (1e-5 s-1)				
	100	(u-de) (u-de)				

絭外縤観測			100 80 60
	金星	地球	⁴⁰
半径	6050 km	6378 km	20-
公転周期	224日	365日	200
自転周期	243 ⊟(1.8m/s)	1日(460m/s)	
1太陽日	117日	1日	1
大気組成	CO ₂	N2, O2	1
アルペド	0.78	0.3	
也表面気圧	92 bar	1 bar	

1

金星と地球

 これまでの金 スーパーローショ 平均子午面循環(2. 熱潮汐波(Takagi & 静止状態からスー/ 低解像度で長時間 	れまでの金星GCM研究 ヘパーローションの再現に一応、成功… 平均子午面循環(Yamamoto & Takahashi, 2003…) 熱潮汐波(Takagi & Matsuda, 2007…) 静止状態からスーパーローテーションを再現するために、 低解像度で長時間積分、非現実的な加熱や温度場を設定				
References	Horizontal reso	olution	Vertical grid		
Yamamoto & Takahashi (2003)	T10 (~ 11° × 11°)	32 × 16 grids	50 levels		
Lee et al. (2005)	5° × 5°	72 × 36 grids	32 levels		
Kido & Wakata (2008)	T21 (~ 5.6° × 5.6°)	64 × 32 grids	60 levels		
Takagi & Matsuda (2007)	≦T21 (~ 5.6° × 5.6°)	64 × 32 grids	60 levels		
Lebonnois et al. (2010)	7.5° × 5.6°	48 × 32 grids	50 levels		
Parish et al. (2011)	1.2° × 0.9°	300 × 200 grids	50 levels		
数値計算: 現実的設定で 観測:子午面	高解像度計算でのコン スーパーローテーシン 循環や雲層内部の	ストの増大 ョンが出ない 観測が困難			

t=3からt=9の観測を入力して同化、t=6を再解析値とする。(=4D LETKF)

●観測データ:雲層上端(70km)の水平風

- ・仮想データ: AFES-VenusのQt (太陽加熱に日変化成分を含む)設定で作成
- ・現実データ: VMC; Venus Monitoring Camera (73 obs. in Epoch 4: 28 Jan to 26 Apr 2008)

観測データ						
Case	Obs	interval	AFES			
H1	Qt	1h	Qz			
H6	Qt	6h	Qz			
H24	Qt	24h	Qz			
Vmc	VMC	$\sim 24h$	Qz			
Frf	None	None	Qz			

<u>同化結果</u>

●高度70kmのRoot-mean-square error (U, V, T)

●高度70kmの水平構造(Cases Qz, Qt, H24)

Case H24の<u>温度場にも</u>熱潮汐波の水平構造 風速場を1日1回のみ同化した結果

●赤道の鉛直構造(Cases Qz, Qt, H24)

Case H24の<u>温度場に熱潮汐波の鉛直伝播</u> 高度70kmの風速場を1日1回のみ同化した結果

●Case Vmcの水平、鉛直構造

温度場に熱潮汐波の水平構造、鉛直伝油(振幅小) 高度70kmの昼面の風速場を1日1回のみ同化した結果

●スプレッドの緯度高度断面(Cases Frf, H1, Vmc)

Case H1は東西平均風速の変化が顕著 高頻度の観測データは大気大循環を大きく変える可能性がある

初期成果のまとめ

> AFES-Venusのデータ同化システム
 VALEDAS (VAFES-LETKF data assimilation system)を開発した。
 > 雲層上端の風速の観測データを2種類用意し、同化のテストを実行。
 ① GCMで作成した仮想データ(1h毎、6h毎、24h毎)
 ② VMC/VEXの現実データ(ほぼ24h毎だが水平領域は一部)

両観測データは熱潮汐波を含むが、

同化させるGCMは熱潮汐波なしで実験。 ⇒ 熱潮汐波の構造(水平、鉛直)を再現できた。

予備実験:Qt設定で同化、温度データの同化、63メンバーの計算(収束性を確認)、 局所化や観測誤差を変えた感度実験(影響が小さいことを確認)

● EFSO (Ensemble Forecast Sensitivity to Observations)の導入 Kalnay et al. (2012 Tellus), Ota et al. (2013 Tellus), Hotta et al. (2017 MWR)

- ✓ アンサンブルベースのForecast Sensitivity to Observations (FSO)
- ✓ 診断的に観測のインパクトを推定できる
 ✓ 観測のインパクトを個々に見積もることができる
- ✓ Observation System (Simulation) Experiment (OS(S)E)の必要がない

Forecast-analysis cycle w/ EFSO $\Delta e^{2} = (\delta \bar{\mathbf{y}}_{0}^{ob})^{T} \frac{1}{K-1} \mathbf{R}^{-1} \mathbf{Y}^{a} (\mathbf{X}_{t|0}^{f})^{T} \mathbf{C} (\mathbf{e}_{t|0} + \mathbf{e}_{t|-6})$ EnAFES gues obsope LETKE t=-/ ► <u>\</u> EFS0 EnAFES obsope t : output obs Yamazaki et al. (2018?)

● EFSOのテスト結果 (Case H1) ✓ 相関は80.64%; EFSO値の計算に成功(やや過大評価?)

● 電波掩蔽(複数衛星)の金星への応用 (NASA/JPL)

✓ 疑似観測データを同化し、EFSO値から高い観測インパクト の位置や時間を選定 ⇒ 今後の金星探査ミッションに

◎ AFES-Venusの改良

- ✓ 雲物理過程の導入(安藤さん、高木さん)
- ✓ 放射過程の導入(佐川さん、関口さん)

5. まとめ

金星大気のデータ同化の現状と今後の展望を紹介した。

- 金星スーパーローテーションの謎は現在でも解明されていない。 ・ 初期に静止した状態から現実的な設定のもとに長時間積分して、 スーパーローテーションを現実的に再現した例はない。
- 我々の大気大循環モデル(AFES-Venus)は現時点で世界一の 金星GCMの一つである。 ・ フランスのGCMは放射や地形などの詳細な物理過程が入っているが、
 - ーションなどに観測と不整合な点がある。 再現されるスーパーロー -テ-
 - 円がなれる人、パート、シンクなどのおかにしためのです。 (Lebonnois, S. N. Sugimoto, and G. Gilli, Leans2016)。 観測およびGCMの結果の比較を行いながら、より現実的な設定を検討し、 改良していかなくてはならない。モデルの改良は現在進行中である。
- 我々のデータ同化システム(VALEDAS)は現時点で世界唯一の
- 我々のテータ同化システム(VALEDAS)は30時点でビディー・ 金星大気データ同化システムである。

 あかつきの観測データ同化(再解析ブロダクトの作成)、EFSOを使った観測インパクトの推定、モデルの改良による他の観測量の同化など。
- 後、惑星大気の研究において、ますますデータ同化の重要性が高まるであろう。

References

- Kertericices N. Sugimoto, H. Ando, and Y. Matsuda, Three dimensional structures of thermal tides simulated by a Venus GCM, Journal of Geophysical Research: Planets, Vol. 123, (2018), 18pp. N. Sugimoto, A. Vannzaki, T. Kouyana, H. Kashimura, T. Enomoto, and M. Takagi, Development of an ensemble Kalman filter data assimilation system for the Venusian atmosphere, Scientific
- Reports, Vol. 7, (2017), 9321, 9pp. H. Ando, T. Imamura, M. Sugimoto, M. Takagi, S. Tellmann, M. Pätzold, B. Häusler, H. Kashimura, and Y. Matsudo, Vertical structure of the axi-asymmetric temperature disturbance in the Venusian polar atmosphere: Comparison between radio occultation measurements and GCM 1

- and r. Anastuda, Verteal structure of the axt-asymmetric temperature disturbance in the Venusian polar atmosphere: Comparison between radio occultation measurements and GCM results, *Journal of Geophysical Research: Planets*, Vol. 122, (2017), 17pp. S. Lebonnois, N. Sugimoto, and G. Gill, Wave analysis in the atmosphere of Venus below 100-km altitude, simulated by LMD Venus GCM, *Icarus*, Vol. 278, (2016), p38-51. H. Ando, N. Sugimoto, M. Takagi, H. Kashimura, T. Imamura, and Y. Matsuda, The puzzling Venusian polar atmospheric structure reproduced by a general circulation model, *Nature Communications*, Vol. 7, (2016), 10398, 8pp. M. Sugimoto, M. Takagi, and Y. Matsuda, **Waves in a Venus general circulation model**, *Nature Communications*, Vol. 7, (2016), 10398, 8pp. M. Sugimoto, M. Takagi, and Y. Matsuda, **Baroelini** emdes in the Venus atmosphere simulated by GCM, *Journal of Geophysical Research: Planets*, Vol. 119, (2014), p1950-1968 T. Imamura, T. Higuchi, Y. Matsuda, Baroelinie modes in the Venus atmosphere simulated by GCM, *Journal of Geophysical Research: Planets*, Vol. 119, (2014), p1950-1968 A. Aroshizawa, H. Kobayashi, <u>N. Sugimoto</u>, N. Yokoi, and Y. Shimomura, A. Reynolds-averaged turbulence modeling approach to the maintenance of the Venus superotation, *Geophysical and Astrophysical Fluid Dynamics*, Vol. 107, No.6, (2013), p614-639. M. Sugimoto, M. Takagi, TM studud, P. O. Takahashi, M. Haiwitari, and Y.-Y. Hayashi, **Baroelinie modes in the atmosphere on Venus simulated by AFES**, *Theoretical and Applied Mechanics Japan*, Vol.61, (2013), p11-21.

