EFSOの現状と

惑星気象研究への発展の可能性

小槻 峻司¹, 黒澤賢太^{1,2}, 三好 建正^{1,3}

Data

Team

Assimilation

¹Data Assimilation Research Team, RIKEN-AICS, Japan ²Department of Civil Eng., Kobe University, Japan ³University of Maryland, College Park, Maryland, USA

<u> 第19回惑星圏研究会, Feb. 28, 2018 @ 東北大学・青葉ホール</u>

Who am I?

Field survey @ Thailand Temple

2017.10 ~

- Research Scientist, RIKEN-AICS
- TAKUETSU Researcher, MEXT

Who am I?

~2013.12

- Ph.D. student, Kyoto-Univ.
- Research Fellow, JSPS

2014.01 ~ 2017.09 • Postdoc, RIKEN-AICS

2017.04 ~

• Part-time lecturer, Kyoto Univ.

2017.10 ~

- Research Scientist, RIKEN-AICS
- **TAKUETSU Researcher, MEXT**

Ensemble FSO (観測のインパクト評価)

FSO: Forecast Sensitivity to Observation

• L2 norm for Toy models (e.g. L63, L96)

$$e_{L2}^{2} = \frac{1}{2} \mathbf{e}^{\mathrm{T}} C \mathbf{e} = \frac{1}{2N} \sum_{i=1}^{N} e_{i}^{2} \qquad \mathbf{e}_{t} = \overline{\mathbf{x}}_{t}^{f} - \mathbf{x}_{t}^{ANL}$$

Derivation

$$\Delta e^{2} = \frac{1}{2} \left(\mathbf{e}_{t|0}^{\mathrm{T}} C \mathbf{e}_{t|0} - \mathbf{e}_{t|-6}^{\mathrm{T}} C \mathbf{e}_{t|-6} \right) = \frac{1}{2} \left(\mathbf{e}_{t|0} - \mathbf{e}_{t|-6} \right)^{\mathrm{T}} C \left(\mathbf{e}_{t|0} + \mathbf{e}_{t|-6} \right)$$
$$\approx \frac{1}{2} \frac{1}{m-1} \delta \mathbf{y}_{0}^{\mathrm{T}} \mathbf{R}^{-1} \mathbf{Y}_{0}^{a} \mathbf{X}_{t|0}^{f\mathrm{T}} C \left(\mathbf{e}_{t|0} + \mathbf{e}_{t|-6} \right)$$

$$\mathbf{e}_{t|0} - \mathbf{e}_{t|-6} = \overline{\mathbf{x}}_{t|0} - \overline{\mathbf{x}}_{t|-6}^{(1)} \text{ liner error growth} approximation (2) ensemble error covariance approximation (3) ensemble error covariance approximation (4) ensemble error ensemble error covariance approximation (4) ensemble error ensemble error covariance approximation (4) ensemble error ensemble e$$

An example with Lorenz-96

- Serial EnSRF (Whitaker and Hamill 2001)
 - Ensemble size : 8
 - # of observations : 40
 - Adaptive multiplicative inflation (Miyoshi 2011)
- Assimilation order
 - 1. Random
 - 2. From worse to better impacts based on EFSO
 - 3. From better to worse impacts based on EFSO

Kotsuki et al. (2017, MWR)

RMSE during serial assimilation (one case)

-: EFSO worse \rightarrow better obs.

RMSE during serial assimilation (ave of 1460 cases)

EFSO with NICAM-LETKF

Error Norms

• L2 norm for Toy models (e.g. L63, L96)

$$e_{L2}^2 = \frac{1}{2} \mathbf{e}^{\mathrm{T}} C \mathbf{e} = \frac{1}{2N} \sum_{i=1}^{N} e_i^2$$

• Moist Total Energy norm for Atmospheric models

$$e_{MTE}^2 = \frac{1}{2} \mathbf{e}^{\mathrm{T}} C \mathbf{e} = \frac{1}{2} \left(KE + PE + ME \right)$$

KE: kinetic energy PE: potential energy ME: moist energy

$$KE = \frac{1}{S} \int_{S}^{1} (u'^{2} + v'^{2}) d\sigma_{v} dS \qquad PE = \frac{1}{S} \int_{S}^{1} \left[\int_{0}^{1} \frac{C_{p}}{T_{t}} T'^{2} d\sigma_{v} + \frac{R_{d}T_{r}}{p_{r}^{2}} Tp_{s}'^{2} \right] dS$$
$$ME = \frac{1}{S} \int_{S}^{1} \frac{L^{2}}{C_{p}T_{r}} q'^{2} d\sigma_{v} dS \qquad \text{f Ota et al. (2013) Telly}$$

cf. Ota et al. (2013, Tellus)

FSO: Forecast Sensitivity to Observation

Ensemble-based FSO

Moist Total Energy for Error Norm (Kalnay et al. 2012)

$$\Delta e_{MTE}^{2} = \left(\mathbf{e}_{t|0}^{\mathrm{T}} C \mathbf{e}_{t|0} - \mathbf{e}_{t|-6}^{\mathrm{T}} C \mathbf{e}_{t|-6}\right) / 2 \qquad \mathbf{e}_{t} = \overline{\mathbf{x}}_{t}^{f} - \mathbf{x}_{t}^{ERA,ANL}$$
$$\approx \frac{1}{2} \frac{1}{m-1} \delta \mathbf{y}_{0}^{\mathrm{T}} \mathbf{R}_{0}^{-1} \mathbf{y}_{0}^{a} \mathbf{X}_{t|0}^{f\mathrm{T}} C\left(\mathbf{e}_{t|0} + \mathbf{e}_{t|-6}\right)$$
$$\overset{\text{obs-minus-FG}}{\overset{\text{obs-space}}{}} \text{AN ptb} \quad \text{FCST ptb}$$

Normalized Obs. Departure for Error Norm (Sommer and Weissmann 2016)

$$\Delta e_{NOD}^{2} = \left(\mathbf{d}_{t|0}^{\mathrm{T}} \mathbf{R}_{t}^{-1} \mathbf{d}_{t|0} - \mathbf{d}_{t|-6}^{\mathrm{T}} \mathbf{R}_{t}^{-1} \mathbf{d}_{t|-6} \right) / Np \quad \mathbf{d}_{t} = \mathbf{y}_{t}^{o} - H\overline{\mathbf{x}}_{t}^{f}$$
$$\approx -\frac{1}{Np} \frac{1}{m-1} \delta \mathbf{y}_{0}^{\mathrm{T}} \mathbf{R}_{0}^{-1} \mathbf{Y}_{0}^{a} \mathbf{Y}_{t|0}^{f\mathrm{T}} \mathbf{R}_{t}^{-1} \left(\mathbf{d}_{t|0} + \mathbf{d}_{t|-6} \right)$$
obs-minus-FG AN ptb FCST ptb in obs space

EFSO with NICAM-LETKF

EFSO: FCST MTE Error Reduction (2014/07)

vs. NICAM-LETKF

vs. ERA Interim

Monthly average in July 2014; FT 06hr

EFSO: FCST NOD Error Reduction (2014/07)

Each type of observations mainly contributes to the improvement of the observed variable!

Spatial Pattern of AMSU-A impacts

Beneficial Observation Rate

FSO: Forecast Sensitivity to Observation

FCST Error Reduction per Obs (2014/07/11/00)

FCST Error Reduction per Obs (2014/07/11/00)

Fraction of beneficial observations (ave. 2014/07)

Reference	Own Analysis	ERA Interim	AMSU-A
FT 06hr	<u>58.8 %</u>	55.3 %	53.1 %
FT 12hr	<u>56.1 %</u>	54.2 %	53.1 %

FSO may overestimate observational impact if we use the own analysis for verification reference.

Summary

- 観測インパクト推定 (EFSO)
 対解析・対観測によるインパクト推定が可能
 - データ同化は、観測へのフィッティングを大幅に改善するが、他変数の改善は限定的
 - 対自身の解析EFSOはインパクトを過大に評価

- 良いインパクトの観測は、概ね50+%

Kotsuki et al. (2017, MWR) Kotsuki et al. (2018, in prep.)

惑星気象研究への発展可能性

Martian Atmosphere

Identifying Martian atmospheric instabilities and their physical origins using bred vectors

Steven J. Greybush, ^{a,*} Eugenia Kalnay,^{a,b,c} Matthew J. Hoffman^d and R. John Wilson^{e†} ^aDepartment of Atmospheric and Oceanic Science, University of Maryland, College Park, MD, USA ^bEarth System Science Interdisciplinary Center, University of Maryland, College Park, MD, USA ^cInstitute for Physical Science and Technology, University of Maryland, College Park, MD, USA ^dSchool of Mathematical Sciences, Rochester Institute of Technology, Rochester, NY, USA ^eNOAA/Geophysical Fluid Dynamics Laboratory, Princeton, NJ, USA

The Challenge of Atmospheric Data Assimilation on Mars

T. Navarro¹, F. Forget¹, E. Millour¹, S. J. Greybush², E. Kalnay³, and T. Miyoshi^{3,4}

¹Laboratoire de Météorologie Dynamique (LMD), Institut Pierre Simon Laplace (IPSL), Paris, France, ²Department of Meteorology and Atmospheric Sciences, Pennsylvania State University, University Park, PA, USA, ³Department of Atmospheric and Oceanic Sciences, University of Maryland, College Park, MD, USA, ⁴RIKEN Advanced Institute for Computational Science, Kobe, Japan

Figure 2. Bred vector amplitude (top, temperature-squared norm, K²) and daily growth rate (bottom) time evolution. SH amplitudes are in grey/blue, NH in black/red. Raw BV amplitudes every 6 hours are depicted as scattered dots, whereas 30-sol smoothed values from year 1 are in dark shading. This figure is available in colour online at wileyonlinelibrary.com/journal/qj

Figure 12. Map of difference in (top) nighttime and (bottom) daytime temperature between MCS and the background of the TuT-TuD experiment, for vertical level $\sigma = 0.4$, from Ls = 290° to Ls = 310°. Red (blue) indicates that the model is warmer (colder) than the observations. The yellow boxes indicate the Syria Planum and Terra Sabaea regions detailed in Figure 13. Black contours indicate the topography.

Venusian Atmosphere

金星でも、あかつきのデータ同化が進みつつある(Sugimoto et al. 2017)

・惑星気象データ同化研究の展望

– 力学系を理解する(bred vector, Lyapunov exponent)
– 双子実験やFSOで、センサ・観測網を事前に調査
– 画像データから、状態やモデルパラメータを推定