2018年2月28日 惑星圏研究会 水惑星学セッション

地球型惑星の大気散逸レビュー (火星と水を中心に)

寺田直樹(東北大)

Outline

- ・火星と水(H₂O)に焦点
- 水素(H)の散逸
- 酸素(O)の散逸
- 大気散逸の歴史
- 結論:

大気の上端(宇宙空間)と下端(表層)での相 互作用を、まずは<u>酸素</u>について抑えるべき

導入

 重力が小さい火星は大気 散逸の影響を受けやすい
 - N₂, CO₂の惑星質量に対す る重量比(左図)は宇宙空 間への散逸を示唆

 - 重爆撃後にも N₂の大半 (50-99%)が散逸したことを 示唆 [e.g., Chassefiere et al., 2004, 2007]

火星大気とその散逸:1次近似

- 火星大気は CO₂, H₂O と、それらの光化学生成物から成る
- 宇宙空間への H, O, C の散逸。表層の酸化
- Hは軽いので、散逸しやすい。本当?

H, O, C の散逸

- 水素(H) 散逸のボトルネックは2段階
 - 1. <u>下から上への輸送(主にH2として輸送)</u>
 - 2. 超高層での散逸(H₂, H の熱的散逸(ジーンズ散逸など)、H の非熱的散逸)
- 酸素(O)・炭素(C) 散逸のボトルネックは1段階
 - 2. 超高層での散逸(主成分の CO₂起源の O, C の非熱的散逸)

• 火星・金星・地球・タイタンの水素散逸は、ほぼ拡散律速散逸

- 1.が律速。異論はあるが、ファクター程度の違い [Catling and Kasting, 2017]

• 散逸フラックスは $\sigma_i = b_i f_i / H_a$ で与えられる

- f_iはコールドトラップより上側の水素混合比、b_iは相互拡散パラメタ、H_aはスケールハイト

Hの散逸(やや余談)

- 今話したのは古典的シナリオ
 - H₂によるゆっくりとした(~数ヶ月の)上方輸送がボトルネック
- 最近の MEX, MAVEN 等による発見:
 - 高高度 H_2O (→ 青木さん講演)
 - H 散逸の短期変動(→ 関さん講演、Alex Hubig さんポス ター発表)
- しかしこの短期変動(~数週間)を加味しても、以降で説明するシナリオは恐らく変わらない、はず

O散逸によるH散逸の律速

- ・ O は重いので、一般的には H よりも散逸しにくいはず。非熱的散逸(図)
- ・現在の火星
 - -H散逸率:10^{26~10²⁷ atom/s}
 - -O散逸率:10^{25~10²⁶ atom/s}
 - (C散逸率:10²⁴~10²⁵ atom/s)
- しかし、このままでは
 0 が火星に溜まってしまう

○ の非熱的散逸過程
 (現在は、解離再結合が支配的)
 → 関さん講演

O散逸によるH散逸の律速

酸素の消失速度 [cm/s]

- Oが溜まるとどうなるか?
 - 大気中の H₂の存在度が減り、H の散逸率が減る
 - (Hの散逸率): (Oの散逸率+地殻への消失率)=2:1 になるように大気が自己調整 [McElroy, 1972; Zahnle et al., 2008]

Effective H escape velocity vs. diffusion-limited escape velocity

Hの散逸速度を上げても、Hの散逸率はあまり変わらない

- 大気中の H₂存在度が変わるだけ

OはHの散逸率を調整するが、逆は起こりにくい

結局、水の散逸率を知りたい時は 何を測れば良いの?

- ・0に注目すべし
- 火星大気中に O₂ が溜まる時間スケールは10万年
 10万年以下では、(H 散逸):(O 散逸・消失)=2:1は 必ずしも成り立たない
- ミランコビッチ・サイクルで平均すると釣り合う? [Krasnopolsky, 2002]
 - Hの散逸率は、自転軸傾斜角に依存する
 - Oの散逸率は、自転軸傾斜角に依存しない
- Oの散逸率+地殻への消失率が、
 現ミランコビッチ・サイクルにおける水の平均散逸
 率を表す

結局、水の散逸率を知りたい時は 何を測れば良いの?

上2つ抑えれば、
 あとは推定可能?

表層の酸化を含めた大気光化学モデル [Liu and Donahue, 1976]

(Oの消失は、上(宇宙)でも下(表層)でも大気にとってはあまり差はない。消失率/含有量が小さいので)¹²

Chassefiere et al. [2013] を改編

大気散逸の歴史

- ・ 窒素と希ガス同位体比から導かれる火星大気の歴史 [Kurokawa et al., 2018]
- 散逸に関する2つの問題:

41億年前以前:なぜ大気は崩壊しない?
41億年前以後:なぜ大気は崩壊する?

41億年前以前:なぜ大気は崩壊しない?

- Tian et al. [2009], Amerstrofer et al. [2017]
- UV放射が強い過去の火星では、CO₂の解離により、熱圏での放射冷却 が効きにくくなる → 0,Cのスローハイドロダイナミック流出 → ~1億年 で大気消失??(理論予測)
 - 消失後に脱ガスで大気形成??
 - 41億年前までは磁場が大気を守る??(堺さんポスター発表 → 少なくともイ オンは守られない?)

41億年前以前:なぜ大気は崩壊しない?

• 補足:

– Oの散逸には、H₂Oからの寄与と、CO₂からの寄与がある
 – 過去では、Cの散逸率も大きくなるので要注意

41億年前以後:なぜ大気は崩壊する?

Solar period	1 XUV (present)	2 XUV (~2 Ga)	6 XUV (3.5 Ga)
Process [s ⁻¹]			
Ion pickup [O ⁺]	$3 imes 10^{24}$	$3.8 imes 10^{25}$	8×10^{26}
Dissociative recombination [O [*]]	${\sim}3 imes10^{24}$	$3 imes 10^{25}$	8×10^{25}
Sputtering [O]	$\sim 2 imes 10^{23}$	$7 imes 10^{25}$	$1.3 imes 10^{27}$
Sputtering [CO]	$3.5 imes 10^{22}$	$2.3 imes 10^{24}$	$4 imes 10^{25}$
Sputtering [CO ₂]	$5 imes 10^{22}$	$2 imes 10^{24}$	$2.5 imes 10^{25}$
Plasma clouds [O ⁺]	$1 imes 10^{24}$	$8 imes 10^{24}$	$2 imes 10^{26}$
Cold ion outflow [O ⁺]	$\leq 1 \times 10^{25}$	$\leq 5 \times 10^{26}$	$\leq 3 \times 10^{27}$
Total O loss	$\leq 1.7 \times 10^{25}$	$\leq 6.5 \times 10^{26}$	$\leq 5.4 \times 10^{27}$

[Terada et al., 2009]

- 41-35億年前
 - イオンピックアップ、コールドイオン流出で1気圧程度ならば 逃がせそう
 - スパッタリング(イオン降込みによる大気の叩き出し)は効くのかなあ?
 - ・誘導磁気圏の形成で、大気は守られるはず
 - 地殻に行った量も多いはず

まとめ

- ・火星と水(H₂O)に焦点
- ・水素(H)の散逸 → 拡散律速散逸
- ・酸素(O)の散逸 → 非熱的散逸。表層の酸化。
 Hの散逸率を調整
- ・大気散逸の歴史 → 黒川さんの講演
- 結論:

大気の上端(宇宙空間)と下端(表層)での相 互作用を、まずは<u>酸素</u>について抑えるべき