
Simulation Development of
Planetary Magnetosphere toward
Exascale Computing Era

Keiichiro FUKAZAWA1, Yuto KATO2, Yohei MIYAKE3,
and Takeshi NANRI4

1. Academic Center for Computing and Media Studies, Kyoto University
2. Graduate School of Science Geophysics, Tohoku University
3. Graduate School of System Informatics, Kobe University
4. Research Institute for Information Technology, Kyushu University

Feb. 27, 2018

Simulation of Jovian magnetosphere 1
Early global simulation of magnetosphere around 2000
Starting just around the Galileo spacecraft observation

Fig. 1. Plasma pressure and flow vector in the
equatorial plane [Ogino et al., 1998]

Fig. 2. Plasma density (a) and pressure with flow vector
in the equatorial plane [Miyoshi and Kusano, 2001]

Simulation size: 300×200×100=366MB
Performed with the shared memory vector parallel supercomputer
Now we can calculate it with our smartphone!!

2

Simulation of Jovian magnetosphere 2
Simulation from 2005 to 2010

• Simulation size: 600×400×200=3GB
• Calculated with the distributed memory

scalar supercomputer
• Now we can do using our laptop PC

Fig. 3 Periodic plasmoid ejection [Fukazawa et al., GRL, 2005]

3

• Simulation size: 1200×400×400=12GB
• Using PC cluster type supercomputer
• Now we can perform by a computer

server.

Fig. 4. Periodic plasmoid ejection [Fukazawa et al., JGR, 2010]

Periodic plasmoid ejection at 2005 Periodic plasmoid ejection at 2010

4

Latest simulation of Jovian magnetosphere
Now we can perform the 10,000 times larger simulation
of magnetosphere compared to 10 years ago
Recent simulation setting
• Simulation size: 6000×4000×2000=3TB
• Resolution: 0.15RJ at maximum (we used 1.5RJ in 2000 or so)
• Inner boundary: nearby Io torus 5~7RJ (we have set it 15~20RJ in 2000)
• Using massively parallel supercomputer

0.09nPa + zero IMF@t = 50h 0.09nPa + small IMF Bz@t = 110.0h

Fig. 5. High resolution simulation of Jovian magnetosphere

Wavy configuration!

5

Issues of recent Jovian simulation
There are some technical problems
Calculation time: it takes 5days to proceed the simulation for 2.5hr
with 30TFlop.
• 30TFlops=1000 latest Xeon CPUs
Post processing: hard to treat the 3TB simulation data on the server
• In general a PC server only has around 128GB memory (1/24 size)
Data transfer: hard to move the simulation data through the Internet
• It takes 400m/data by 1Gbps throughput network
Storage: hard to acquire the space to store the simulation data
• 300TB (100 data) disk space is required

Issues of recent Jovian simulation
Scalability in exa-scale computing
The exascale computing systems will be developed using over 3 million
computer nodes around 2020.
The scalability of our MHD code using 30 thousand nodes of K-Computer
decreases by 10% (weak scaling).

Fig. 6. Scalability of MHD code with K-computer [Fukazawa et al. 2013]

If we will not do anything to our
code in exa-era, the scalability will
decrease by 20%.
→This may be come from the

synchronization between
massively nodes.

Cause of scalability fall
Issue of Halo Communication
In the boundary communication for the domain decomposition,
pack/unpack of communication data and the order of communication
decrease the parallel scalability.
Using the Halo thread, the time of pack/unpack and communication will be
hidden.

7

process 0 process 1

process 2 process 3

Transferred data from
around processes for
calculation（halo region）

Calculated data in
each process

Proposed Model 1
Parallel Implementation
Domain decomposition for parallel calculation
• Internode communication is only the halo communication in this case
• mpi_isend/irecv and mpi_wait are used

Halo thread for halo region
• Only the Halo thread treats the calculation and communication in the

halo region where has the dependence of communication and calculation
• Then it is not required the synchronization in calculation threads (except

for the Halo thread) due to the communication.
• It is thought that the computer system which has the communication core

will increase, then the Halo thread will be work more effectively than the
only communication thread.

Proposed Model 2

Fig. 7 MHD flowchart (left: original code, right: with the Halo thread)

Introducing the Halo
thread, there is no
synchronization in
calculation threads.

Flowchart of MHD code w/o Halo thread

Proposed Model 3
Implementation of Halo Thread

call init_mhd(f) ! Initilization
!
!----Time evoluation---!

do time = 1, 1000
!
!----Thread setting----!
!$OMP PARALLEL PRIVATE(myid,mylid,ks,ke,ii)

myid = omp_get_thread_num()
nthreads = omp_get_num_threads() - 1
mylid = myid - 1
kmod = mod(nzz-2, nthreads)
kdiv = floor(real((nzz-2)/nthreads))

!
if (kmod > mylid) then

ks = mylid * (kdiv + 1) + 1
ke = ks + kdiv

else if (kmod == mylid) then
ks = mylid * (kdiv + 1) + 1
ke = ks + kdiv - 1

else
ks = mylid * kdiv + kmod + 1
ke = ks + kdiv - 1

end if
!
!----Halo thread----!

if(myid == 0) then
call boundary(f) ! boundary setting
call halo3d(f) ! Halo communication

!
do k = zs, ze

call mhd_calc(f) ! MHD calc. at Halo
end do

!
!----Calc thread----!

else
do k = ks+1, ke-1

! MHD calc. except for Halo
call mhd_calc(f)

end do
end if

!
!$OMP END PARALLEL
!
.
.
.

end do

Performance Measurements

Fig. 8. Performance of strong and weak scaling with/without
on FX10 (8 threads).

Strong scaling:800×800×1600, 200×200×400
Weak scaling :100×100×100/process

Strong and weak scaling performance

Fig. 9. Performance of strong and weak scaling with/without
on the HA8000 (12 threads).

FX10(SPARC64 Ixfx + Tofu) HA8000(Ivy Xeon + InfiniBand FDR)

Effective Condition

tcom: Halo communication time
tcal: MHD calculation time without

Halo thread
tcalh: MHD calculation time of halo

region
tcala: Additional MHD calculation

time due to decrease of
calculation thread

When tcom> tcala, there is an advantage
of Halo thread

Condition of good performance using the Halo thread

Limitation of Halo Thread Effect
Necessity of overlapping of calculation and communication

As the strong scaling condition, if tcom+ tcalh > tcala then, the advantage
of Halo thread will be “zero”.

Optimization of Halo Thread
Introduction of the Halo functions
To overlap the halo communication and calculation, Halo functions
are developed. In general the destination and data of halo
communication are fixed or can be defined easily. Considering these
information, Halo functions optimize the pack/unpack operation and
communication. Halo functions are independent from Halo thread so
you can use them without Halo thread.
Explanation of Halo function
• Halo_init: initializes a set of information for halo communication

according to the specified parameters such as the address and the
dimensions of the target array, and the shape of the process grid
with which the array is distributed among processes. The initialized
information consists of the logical coordinate of the process in the
process grid and the addresses used for the halo communication.

Explanation of Halo function
• Halo_isend: a non-blocking function that starts sending the halo

region to the target process according to the specified direction.
• Halo_irecv: a non-blocking function that starts receiving the

halo region from the source process according to the specified
direction.

• Halo_test: checks if the specified “Halo_isend / irecv” has been
completed.

• Halo_wait: waits for the completion of the specified “Halo_isend
/ irecv”.

• Halo_finalize: releases the memory initialized in “Halo_init”.

Implementation of Halo Functions
call halo_init(f) ! Halo Initilization

!
!----Time evoluation---!

do time = 1, 1000
!
!----Thread setting----!
!$OMP PARALLEL PRIVATE(myid,mylid,ks,ke,ii)
.
.
.
!----Halo thread----!

if(myid == 0) then
call boundary(f) ! boundary setting
do l = 1, 26

call halo_irecv(f) ! Halo recieve
call halo_isend(f) ! Halo send
call halo_wait ! for receive
call halo_wait ! for send

!
do k = zs(l), ze(l)

call mhd_calc(f) ! MHD calc. at Halo
end do

!
end do

!----Calc thread----!
else

do k = ks+1, ke-1
call mhd_calc(f) ! MHD calc.

end do
end if

!
!$OMP END PARALLEL
.
.
.

end do

call halo_init(f) ! Halo Initilization
!
!----Time evoluation---!

do time = 1, 1000
!
!----Thread setting----!
!$OMP PARALLEL PRIVATE(myid,mylid,ks,ke,ii)
.
.
.
!----Halo thread----!

if(myid == 0) then
call boundary(f) ! boundary setting
do l = 1, 26

call halo_irecv(f) ! Halo recieve
call halo_isend(f) ! Halo send

end do
!

do l = 1, 26
call halo_wait ! for receive
do k = zs(l), ze(l)

call mhd_calc(f) ! MHD calc. at Halo
end do

end do
!

do l = 1, 26
call halo_wait ! for send

end do
!----Calc thread----!

else
do k = ks+1, ke-1

call mhd_calc(f) ! MHD calc.
end do

end if
!
!$OMP END PARALLEL
.
.
.

end do

No overlapping overlapping

Performance using Halo functions
• To tune the halo exchange and overlap the communication with calculation

in the parallel stencil computation, we have developed “Halo functions”
and introduced them to MHD simulation code.

• As the results we obtained almost double performance enhancement at
maximum.

• In addition, we can perform the overlapping of communication with
calculation easily.

FX100 (SPARC64 XIfx + Tofu2)

Fig. 10. Halo communication time w/o Halo functions on Fujitsu FX100

18

Overlapping Effect
 We achieved 41 % (no overlapping) and 109 % (overlapping) @FX100

performance increase in total simulation time compared to the regular halo
communication.

 Using Halo functions, we have obtained the 14 ~ 41% performance gain in the
total elapse time. Additionally, introducing the overlapping, we can achieve
the 66 ~ 109 % performance gain.

Table 1. Performance enhancement ratio of MHD code with Halo functions to the regular halo exchange

＠FX100 2×2×2
1003

2×2×4
1003

2×4×4
1003

2×2×2
2003

2×2×4
2003

2×4×4
2003

No overlapping 1.1494 1.1533 1.1546 1.4179 1.4115 1.4105
overlapping 1.7181 1.6700 1.6690 2.0959 2.0829 2.0743

Macro-Meso-MIcro coupling simulation
1. Global simulation of Terrestrial magnetosphere
2. Electron Hybrid simulation of high energy particle in Terrestrial

magnetosphere
3. PIC simulation of electro-magnetic environment around a satellite

We plan to couple these (1, 2, 3) simulation in the exaflops computing.

0.25

0.75

0.50

250 msec0

h = -655.36 [cΩe0-1]

Global MHD

Electron
Hybrid

PIC

Other Simulation for Exa computing

Generation of nonlinear wave
Relativistic electron acceleration

Electron Hybrid simulation

MHD simulation

Distance from equator

M
ag

ni
tu

de
 o

f m
ag

ne
tic

 fi
el

d

Micro-Macro Coupling Simulation of Terrestrial
Magnetosphere

21

Status of coupling simulation
Coupling the electron hybrid simulation
Input the magnetic field data of MHD simulation to the electron
hybrid simulation by Dr. Kato[Kato and Omura, 2013]
• Provide the background magnetic field which is the condition of chorus emission
• Recently we can set the inner boundary nearby Io so that we can couple our

simulation.

Fig. 11. Comparison of MHD simulation data and model

Input

22

Summary
 In the exa computing era, there is an issue of parallel computing scalability.
 To overcome the issue, we have introduced the Halo thread to our MHD

simulation code and examined the performances.
 Using the Halo thread we obtained the good performance in both weak and

strong scaling.
 To avoid the limitation of the Halo thread effect, we have developed the Halo

functions which can communicate between process effectively and be easy to
overlap the calculation and communication.

 The Halo functions achieves good performance compared to the usual MPI
communication.

 In addition, we will be able to perform the micro-macro coupling simulation
in the exa era, so we have started to develop the coupling model.

 Now we have connected the MHD simulation and electron hybrid simulation
weakly.

	Simulation Development of Planetary Magnetosphere toward Exascale Computing Era
	Simulation of Jovian magnetosphere 1
	Simulation of Jovian magnetosphere 2
	Latest simulation of Jovian magnetosphere
	Issues of recent Jovian simulation
	Issues of recent Jovian simulation
	Cause of scalability fall
	Proposed Model 1
	Proposed Model 2
	Proposed Model 3
	Performance Measurements
	Effective Condition
	Limitation of Halo Thread Effect
	Optimization of Halo Thread
	Explanation of Halo function
	Implementation of Halo Functions
	Performance using Halo functions
	Overlapping Effect
	Other Simulation for Exa computing
	Micro-Macro Coupling Simulation of Terrestrial Magnetosphere
	Status of coupling simulation
	Summary

