Symposium on Planetary Sciences 2019 Feb. 18-21, 2019 @ 東北大学

原始惑星系円盤の 化学進化 : 太陽系初期物質との比較

野村 英子¹, Chen-En Wei¹, P. Theule², C. Walsh³, T.J. Millar⁴ 1. 東工大地惑, 2. Aix-Marseille大学, 3. Leeds大学,

4. Queen's大学Belfast

原始惑星系円盤からのガス輝線の観測 UV H₂ Lyman-Werner (sub)mm band transitions $CO, 13CO, C^{18}O, C^{17}O, 13C^{18}O,$ HCO⁺, H¹³CO⁺, DCO⁺, [CI], **Optical** [OI] 6300A $C_2H_1 C_2H_2$, $H_2CO_1 HCOOH_1$ NIR CH₃OH, $H_2 v = 1-0 S(1), S(0),$ HCN, $H^{13}CN$, DCN, $HC^{15}N$, CO $\Delta v = 2$, $\Delta v = 1$, HNC, CN, N_2H^+ , N_2D^+ , H_2O , OH, HCN, C_2H_2 , CH_4 HC_3N , CH_3CN , CS, $C^{34}S$, MIR H_2S , SO, etc. $H_2 v = 0.0 S(1), S(2), S(4)$ infrared (sub)mm H_2O_1 , OH_1 , HCN_1 , C_2H_2 , CO_2 , etc. (Spitzer Space Telescope) FIR [OI] 63um, 145um, $CO, H_2O, CH^+, HD, NH_3, etc.$ **ALMA** (Herschel Space Observatory)

星間空間におけるダスト表面反応

多くの複雑な分子種は分子雲→円盤で存在量増加 彗星からの分子輝線観測の結果は円盤モデルと良い一致

ロゼッタミッション: 彗星中の有機分 67P/ Churyumov-Gerasimenko 中の有機分子 COSAC/Philae, ROSINA, Rosetta

Name	Formula	Molar mass (u)	Relative to water	25 ₽ 20			1			
Water	H ₂ O	18	100							
Methane	CH₄	16	0.5	zed						
Methanenitrile (hydrogen cyanide)	HCN	27	0.9	ile 10 -						
Carbon monoxide	CO	28	1.2	D 5			-	- di		
Methylamine	CH ₃ NH ₂	31	0.6	0 -		الدي	.	الليب		و الله
Ethanenitrile (acetonitrile)	CH ₃ CN	41	0.3	10	2	0 3	80	40	50	60
Isocyanic acid	HNCO	43	0.3				m/:	z		
Ethanal (acetaldehyde)	CH ₃ CHO	44	0.5				C ₃ H ₇ O	2		
Methanamide (formamide)	HCONH ₂	45	1.8	グリ	シ	ン [°]	₂H ₅ NϘ₂			ŀ
Ethylamine	C ₂ H ₅ NH ₂	45	0.3				μA			
Isocyanomethane (methyl isocyanate)	CH ₃ NCO	57	1.3				MN			F
Propanone (acetone)	CH ₃ COCH ₃	58	0.3			1111		T		ļ
Propanal (propionaldehyde)	C ₂ H ₅ CHO	58	0.1							Ţ
Ethanamide (acetamide)	CH ₃ CONH ₂	59	0.7			M		N II		-
2-Hydroxyethanal (glycolaldehyde)	CH ₂ OHCHO	60	0.4							-
1,2-Ethanediol (ethylene glycol)	CH ₂ (OH)CH ₂ (OH)	62	0.2		4.05		75.0	ЩŴĻ		
(Geosma	ann+ 2015,	Altwee	g + 201	ő, 2	2017	7) ^{5.00} r	75.0 n/z	15	/5.10	/5.15

グリシン他、多数の有機分子を質量分析器で検出

より複雑な 有機分子生成に向けて

まとめ

原始惑星系円盤中の複雑な有機分子生成 円盤中の複雑な有機分子 ⇔ 星間塵での反応 →ALMAによる円盤内の塵表面反応の検証 ロゼッタの有機分子量の観測値ともよい一致 氷マントル反応によるより複雑な有機分子生成 :HっO氷の結晶化による促進を示唆 円盤内縁の熱的進化に伴う化学反応 気相反応・氷反応による複雑な有機分子生成 →ロゼッタ・はやぶさ2による彗星・小惑星の 有機分子観測と比較