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Table. Comparison between Earth and Jupiter

Jovian Magnetosphere arth | Jupiter
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B Due to the fast rotation and strong magnetic field, the Magnetic moment (A - m?) | 8x10% | 1x10

corotational electric field is dominant compared to the Magnetic field direction - |
convective electric field. at equator
m Due to the fast rotation, the centrifugal force is dominant Orbital radius (AU) 1.0 5.2
compared to the gravitational force outside 2 R; from Jupiter. Plasma source in o
X
— Corotating plasmas are gradually transported outside. magnetosphere
B Due to the strong magnetic field, drift period is much larger Planetary radius (km) 6.4x10° | 7.2x10
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~6-8 R, ~100 R, Fig. Schematic diagram of thermal plasma’s flow
Fig. Schematic view of the Jovian magnetpsphere in magnetospheres [Brice and loannidis 1970]



Fnergy source of radiation from the lo plasma torus (IPT)

B [0's volcanic gas gets caught by the Jupiter magnetic field and picked up. Electrons obtain energy by coulomb
collision with ions, and ions emit light mainly in the UV range by collisional excitation with electrons.

W |tis impossible to cover the radiation with the pick-up energy alone, and the heating of core electrons (~eV)
by hot electrons(~ keV) plays an important role (Delamere & Bagenal, 2003).

B The supply mechanism of hot electrons has not been clarified.
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(values are derived by Bagenal and Delamere, 2011.)



Radial transport with the interchange instability (1.1.)

Magnetic flux tubes will be exchanged if the total energy em I | |
decreases by the interchange motion. N Jupiter Density 5 B
100 | _\UL-F:LS midnight j
—This mechanism could be effective to the transportation of BREEL % 2GRS o B ‘.
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Purpose and Overview

B As to the interchange instability (I.1.) in the Jovian |
magnetosphere, some researches are based on the theoretical

approach and MHD simulation, but there is no research us_inlg
the observation data and showing whether l.l. is influential on
circulation of materials and energy or not.

— We used data obtained by Hisaki and focused on the _
response to the change in the amount of plasma supplied to
the magnetosphere and explore the above problem.

B |n this study, the radial distributions of plasma density and _
temperature were derived from the intensities of emission lines in

the extreme ultraviolet range obtained by Hisaki.



Used data obtained by Hisaki satellite
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Fig. Spectral image of the IPT and aurora obtained using 140-arcsec slit with 2783-min integration
Fig. Variation in intensity of Na D line

« Wavelength range : 50-147 nm obtained by the ground observation
« Spatial coverage : 7~8R, from the center of Jupiter (Yoneda et al., 2015)

« Earth orbit (altitude: ~1000 km) oz

+ Orbital period : 106 min. ST ki T B ekl (L C
« Slit type : 140-arcsec slit

« Obseration period : 2013/11/30-Now '

# In this presentation, we will introduce results from
Nov. 2014 to May. 2015. In mid January 2015, activation
of lo volcanoes was confirmed by the ground-based 20001 S ——>
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Fig. Time variation of IPT radiation captured by Hisaki observation



Plasma diagnosis

The emission intensity of the emission line depends on the density of ions of the light emission
source and the density and temperature of the electrons.

Dependence of electrons on density and temperature depends on emission lines.

»

From the intensities of multiple lines (remote observation data), the density of ions and
the density / temperature of electrons (in-situ physical quantity) can be derived. In this
study, the chi-squared minimum method was used for fitting to observation data and

derive the parameters.
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NVethod Tor data analysis

1. Making spectra at each regions

v' To integrate the spectroscopic images for b days.
v As to the oxygen line, we integrate images with the s/c local time limitation (20:00-4:00).
v' To integrate the data covering ranges of projected radial distances from 5.9-6.3 R}, 6.3-6.7/ R, 6.7-7.1 R}, and /.1-

7.5 Ri at dusk and dawn side respectively.

2. Calculating line intensities

v" To fit spectra with gaussian functions and calculating line intensities.
v" To use slit filling factor considering the torus width, distance between Earth and Jupiter, and instrumental

function.

3. Plasma diagnosis
v" To fit line intensities using CHIANTI atomic database Ver. 8.0.7.
v Column densities and temperature are derived.

4. To calculate the radial profile of local values from the column densities and

temperature assuming power-law function e
v' Chi-squared fitting was performed on the results of the plasma diagnosis in each region. n(r) = ”D(—)
v Local values (NN, Ng*, Ng?+, Ng3*, N+, and T, ) are derived.
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-low of data analysis
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Example of spectroscopic image obtained by Hisaki
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Assumptions

 The velocity distribution of electrons was
taken as a sum of two Maxwellian

distributions (Sittler and Strobel, 1987). g 108
« [H*]/[e"] was set at 0.1 (Bagenal, 1994). % o
- [02+]/[0*] was set at 0.1 (Steffl et al., 2004b). é 8 cgsz,:
« The hot electron temperature was set at 200 : 4 SR
eV (Sittler and Strobel, 1987). ° 0 '™ 1000
- Electrical neutrality was assumed. Fig. Emission rates (Ne=2000/cc)

(Delamere and Bagenal, 2003)
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“lectron parameters

B [he core electron density changed dynamically with the activation of
volcanoes. On DOY ~50 in 2015, it was about twice the value at the quiet time.

o]
o
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Core electron
Density[ /cc]

B [he hot electron fraction began to rise from DOY ~50 in 2015 and peaked at
around DOY 85-120 in 2015. It peaked earlier in the outer region.

= The period during which the hot electron fraction was rising was almost the
same as the period during which auroral activity was high. It is interpreted

[%]

Hot electron
Fraction
~

that the short-lived auroral brightening is caused by reconnection with mass i
loading(Kimura et al., 2018; Tsuchiya et al., 2018). Taken in this light, it is 10 61 Rl
expected that the increase in hot electrons is also caused by the active _ llesm

circulation in the radial direction.

Core electron

Temperat
o)

B The core electron temperature decreased to DOY ~50 in 2015 and then ‘W }

increased. 0 o0 s 0 1%
. . Day of year in 2015
= The decrease/increase in core electron temperature seems to reflect the
promotion of Coulomb relaxation of core/hot electrons due to the increase in Fig. Time variation in core electron
density(N,), hot electron fraction(F,,),

COI’e/hOt electron den5|tY- core electron temperature(T,).



-xamples of Spectra

B \When the core electron density is its maximum (DOY 47 in 2015), almost all emission lines became bright.

B \When the hot electron fraction is its maximum (DOY 101 in 2015), only emission lines in shorter
wavelength range became bright.
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COmpaHSOH Of dUSk and da\/\/n reSU‘tS Fig. Time variation in auroral energy,

IPT energy, and results of plasma
diagnosis. From top, vertical axes
show core electron density(N,), hot

N, : On the dusk side, the peak is clocron fraction(Fy).core elecon
later in the outer area, but on the _ L R R andFoﬂ
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Comparison with previous works

B Core electron temperature and mixing ratios are almost in
agreement with the values derived by the previous researches
(T.~5eV @6 R, and in table) (Bagenal, 1994; Steffl et al., 2004b;
Yoshioka et al., 2017; Nerney et al., 2017).

B Also core electron density in the quiet period is almost in
agreement with previous results(N.~2000 @6 R)) (Bagenal, 1994;
Steffl et al., 2004b; Yoshioka et al., 2017). However, as for the
active period, the density is ~1.5 times higher than the previous
results by Yoshioka et al., 2018 (indicated by large circles).

B The hot electron fraction is slightly higher than the values
derived by some previous results (0.1-0.3 % in Delamere and
Bagenal, 2003).

Table from Yoshioka et al., 2018 Fig. Time variation in results of
Hisaki Cassini Voyager plasma diagnosis. From top,
lons (This Study) [Steffl et al, 2004b]  [Nerney et al., 2017] vertical axes show core electron
" density(N,), hot electron
S | 0.05+001 ~0.05 ~0.06 fraction(F,,), core electron
S . 023005 ~0.2 ~02 temperature(T.), mixing ratios
5" 0.05 + 0.01 ~0.03 ~0.03 (F*, Fe2*, F3+, and Fot). Large
0 0.19+0.05 ~0.2 ~022 circles indicate the previous
O+t  0.1x[0] (assumed) ~0.03 ~0.03 research by Yoshioka et al., 2018.
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Summary

B By applying plasma diagnosis to Hisaki data, we clarified the change
in plasma density and temperature in each region of the IPT. It was
confirmed that the hot electron fraction increases as plasma density
increases. Also, the peak date is more preceding at outer regions
than inner regions. Those results suggest that the increase in hot
electrons is caused by the active circulation in the radial direction.

B [he future work is to evaluate the efficiency of I.I., other
transportation, and/or heating mechanisms quantitively using the
above results.




Appendix.
How to estimate the slit filling factor(SFF(tztl))

SFF (et =1SFF et X . s
t=to) Reee) | 7]
2
S e e e e e ————— ] ﬁ“ﬁ 4 r
1 SFF: Slit filling factor I ' H: Width of the emission region =
| Estimated from data with 140-arcsec | | # We conducted the analysis for typical lines of g 3
: slit and 10-arcsec slit : S 11, SHiI, SIV, and Oll. When we calculate SFF, it =) 1
CTTTTTT T T T T T * I was assumed that the width of the emission ﬂl‘ﬂ%
region is equal when the emitting species are the ¥ 1
same.
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st of used lines

S IV 6b7
SIV 661
S 111680
The width of torus image was evaluated by comparing the data S 111 726, 729
with 140-arcsec slit and with 10-arcsec slit in the near term. S IV 750
SV 754
SI1765
The fact that the value obtained by integrating the spectrum S 111 897, 900
(wavelength vs. count rate) in the wavelength direction with the S 11907, 910
140-arcsec slit was larger by the apparent width of torus than the S 111046

case of 10-arcsec slit was utilized. SV 1063
S IV 1063

S 1077
S 111097

, S 111102
Date : S 111254

10-arcsec slit : 2015/2/18-2/22 S 111260

S IV 1406

140-arcsec slit : 2015/2/16-2/18, 2/23-2/25 YVEVIT,
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-ow to estimate
‘he torus widtr

Latitudinal structure of

torus (to be wanted) Instrumental

function

insaki — ftorus = f?\ * linst

Obtained
by Hisaki

Structure of emission lines

of emissio

N region (H)

_ 2 2
Htorus,?\ — \/HHisaki — Hinst

FWHM obtained
by Hisaki

Point spread
function (FWHM)

[A]

Width of the torus

How to eliminate the effect
of blend

Relationship between Hegrysa
(with blend)and

Hiorus (Without blend) was
calculated using CHIANT]

atomic database.

Convolved width [A]

We assumed the point spread function
(FWHM) of Hisaki/EXCEED at 76.5 nm as
1.89 A.

X |t was estimated by the torus width
obtained by the T60 telescope with a high
wavelength resolution.

The point spread functions (FWHMs) at
other wavelength was assumed by the above
value at 76.5 nm and wavelength
dependency of wavelength resolution
(estimated from data with 10-arcsec slit).
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