Influences of inner core radius on thermal convection in a rotating spherical shell near the critical Rayleigh number

数値実験に基づく内核半径変化が臨界レイリー 数付近での回転球殻対流に与える影響

<u>Yuki Nishida</u>¹, Yuto Katoh¹, Hiroaki Matsui², Masaki Matsushima³, and Atsushi Kumamoto¹

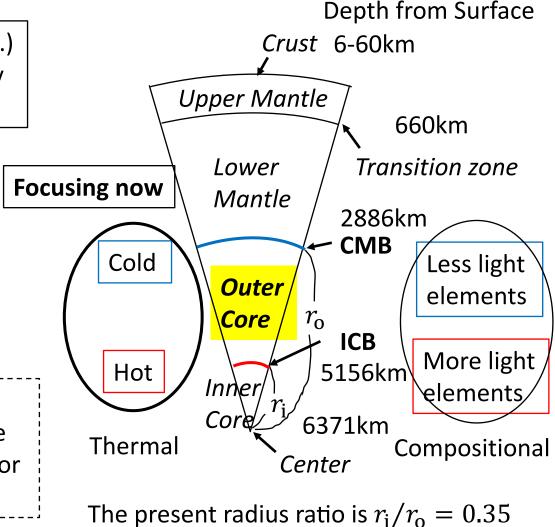
¹Tohoku University, ²University of California, Davis, ³Tokyo Institute of Technology

1.1 Focusing on the inner core radii

Convection of fluid Fe (+Si,O,Mg,...)
Kinetic energy → magnetic energy
= "Dynamo process"

Paleomagnetic analysis shows geomagnetic field has been sustained for at least 3.5 billion years.

From thermochemical evolution calculation, the inner core could be growing from $r_{\rm i}/r_{\rm o}=0$ to 0.35 for the last billion years.



--> It is important to investigate convection with various inner core radii.

1.2 Governing equations for numerical dynamo

Momentum equation

$$\frac{\partial \boldsymbol{u}}{\partial t} + (\boldsymbol{\nabla} \times \boldsymbol{u}) \times \boldsymbol{u} = -\boldsymbol{\nabla} \left(P + \frac{1}{2} \boldsymbol{u}^2 \right) - \boldsymbol{\nabla} \times (\boldsymbol{\nabla} \times \boldsymbol{u}) + \frac{Ra}{Pr} T \frac{\boldsymbol{r}}{r_0} - \frac{2}{E} \boldsymbol{e}_z \times \boldsymbol{u} + \frac{1}{Pm \cdot E} (\boldsymbol{\nabla} \times \boldsymbol{B}) \times \boldsymbol{B}$$

$$\frac{\partial \boldsymbol{u}}{\partial t} + (\boldsymbol{\nabla} \times \boldsymbol{u}) \times \boldsymbol{u} = -\boldsymbol{\nabla} \left(P + \frac{1}{2} \boldsymbol{u}^2 \right) - \boldsymbol{\nabla} \times (\boldsymbol{\nabla} \times \boldsymbol{u}) + \frac{Ra}{Pr} T \frac{\boldsymbol{r}}{r_0} - \frac{2}{E} \boldsymbol{e}_z \times \boldsymbol{u} + \frac{1}{Pm \cdot E} (\boldsymbol{\nabla} \times \boldsymbol{B}) \times \boldsymbol{B}$$
Heat equation
$$\frac{\partial T}{\partial t} = -(\boldsymbol{u} \cdot \boldsymbol{\nabla})T + \frac{1}{Pr} \boldsymbol{\nabla}^2 T$$
Lorentz

Continuity equation of incompressible fluid $\nabla \cdot u = 0$

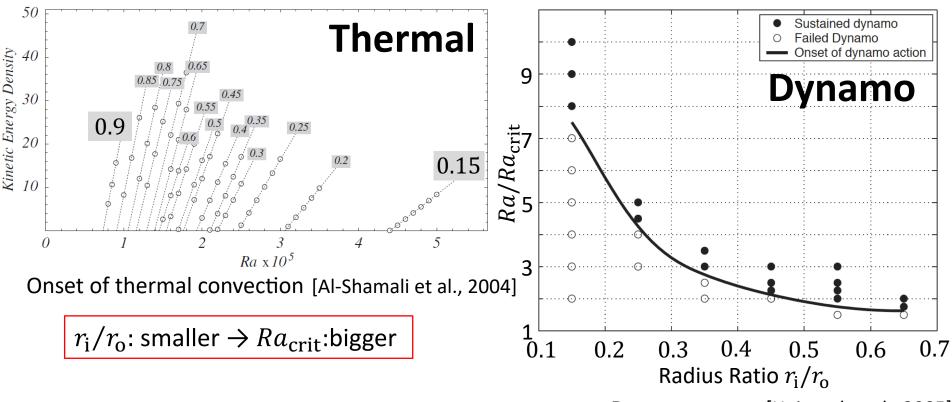
Magnetic induction equation
$$\frac{\partial \mathbf{B}}{\partial t} = \mathbf{\nabla} \times (\mathbf{u} \times \mathbf{B}) - \frac{1}{Pm} \mathbf{\nabla} \times (\mathbf{\nabla} \times \mathbf{B})$$

Gauss's law for magnetic field $\nabla \cdot \mathbf{B} = 0$

Name

Name	Symbol	Definition	vieaning	Estimation
Rayleigh number	Ra	$\alpha_T g_0(\Delta T) L^3 / \nu \kappa_T$	Buoyancy strength	10^{28}
Ekman number	Е	$ u/\Omega L^2$	Rotation weakness	10^{-15}
Prandtl number	Pr	v/κ_T	Thermal diffusion weakness	0.1
Magnetic Prandtl number	Pm	ν/η	Magnetic diffusion weakness	10^{-6}

1.3 Previous studies



Rayleigh Number (related to buoyancy)

$$Ra = \frac{\alpha_T g_0(\Delta T) L^3}{\nu \kappa_T}$$

*The critical Rayleigh number $Ra_{\rm crit}$ represents onset of thermal convection.

Dynamo onset [Heimpel et al., 2005]

 $r_{\rm i}/r_{\rm o}$: smaller

 $\rightarrow Ra$ needed to sustain dynamo: larger

Influence of inner core radius on convection is not fully understood.

1.4 Purpose of this study

For fully understanding of the convection in the outer core at **the past Earth**, we investigate properties of dynamo action with the smaller inner core using numerical dynamo open code Calypso [Matsui et al., 2014].

- Calculation of kinetic/magnetic energy density
- Calculation of length scale of flow

- Maximum growth mode in magneto-convection model
- Influence of magnetic field on convection near dynamo onset

2.1 Code and initial/boundary condition

We used numerical dynamo open code Calypso [Matsui et al., 2014].

- radial derivatives ... second order finite difference
- spectral method
 solenoidal vector field ... poloidal and toroidal
- time stepping

the linear diffusive terms ... the Crank-Nicolson

the Coriolis force and the nonlinear terms ... second order Adams-Bashforth

<u>Initial condition</u> [cf. Benchmark case 1 proposed by Christensen et al. (2001)]

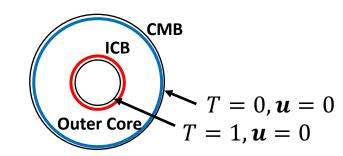
Given various modes of temperature perturbation by

$$T(r,\theta,\phi) = \sum_{l=1}^{l_{\text{max}}} T_l^l(r) Y_l^l(\theta,\phi)$$

Given an axial dipole as a seed magnetic field;

$$\boldsymbol{B} = \boldsymbol{\nabla} \times \boldsymbol{\nabla} \times \left(B_{S1}^0(r) Y_1^0(\theta, \phi) \hat{r} \right) + \boldsymbol{\nabla} \times \left(B_{T2}^0(r) Y_2^0(\theta, \phi) \hat{r} \right)$$

Boundary condition



Mantle and the inner core ... Electrically insulated

2.2 Parameters setting

	Case 1	Case 2	Case 3	
$r_{\rm i}/r_{ m o}$	0.15	0.25	0.35	
$Ra_{\rm crit}[\times 10^5]$	1.09	0.72	0.56	
$Ra[\times 10^5]$	8.7~17	1.4~7.0	0.84~4.0	
Ra/Ra _{crit}	7.0~15.6	1.9~9.7	1.5~7.1	

<-- Thermal simulation

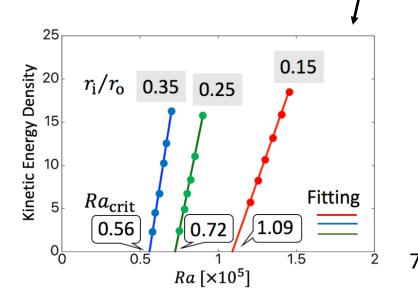
*The critical Rayleigh number Ra_{crit} represents onset of thermal convection.

$$E = 1 \times 10^{-3}$$
, $Pr = 1$, $Pm = 5$

Kinetic/Magnetic energy density

$$E_{\text{kin}} = \frac{1}{2V_{\text{S}}} \int_{V_{\text{S}}} \boldsymbol{u}^2 dV$$

$$E_{\text{mag}} = \frac{1}{2V_{\text{S}}EPm} \int_{V_{\text{S}}} \boldsymbol{B}^2 dV$$

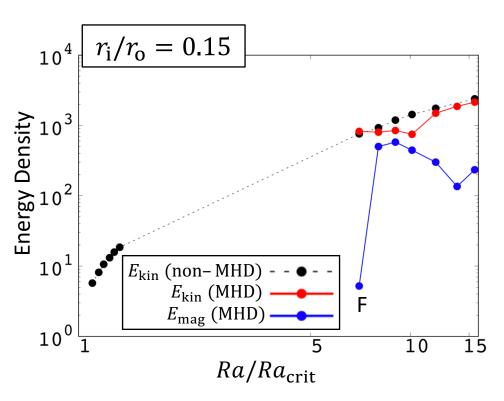


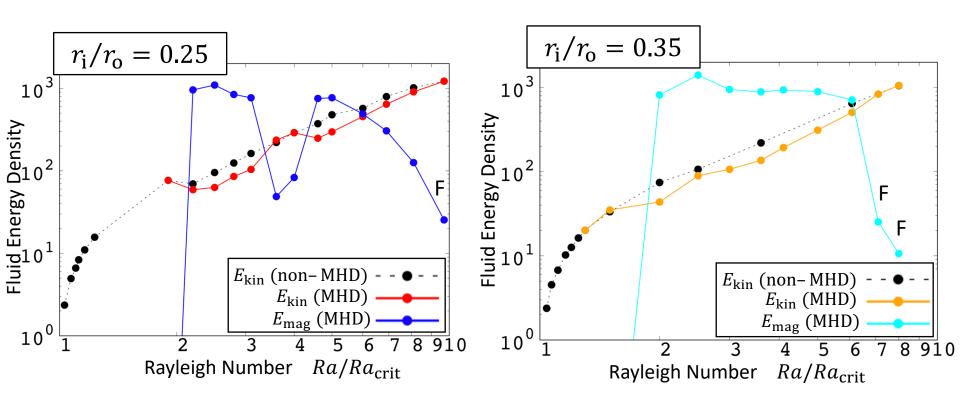
3.1 Kinetic/magnetic energy density

Time average of $E_{\rm kin}$ and $E_{\rm mag}$ for $t/\tau_{\eta}=1.5$ to 2.0 * $\tau_{\eta}(=L^2/\eta)$: magnetic diffusion time

- From Common point $E_{\rm kin}$ (MHD) $< E_{\rm kin}$ (non-MHD) under large magnetic field.
- Deferent points
- In $r_i/r_o = 0.15$, $E_{\text{mag}} < E_{\text{kin}}$
- In $r_{\rm i}/r_{
 m o}=0.25$, $E_{
 m mag}>E_{
 m kin}$ or $E_{
 m mag}< E_{
 m kin}$
- In $r_{\rm i}/r_{\rm o} = 0.35$, $E_{\rm mag} > E_{\rm kin}$

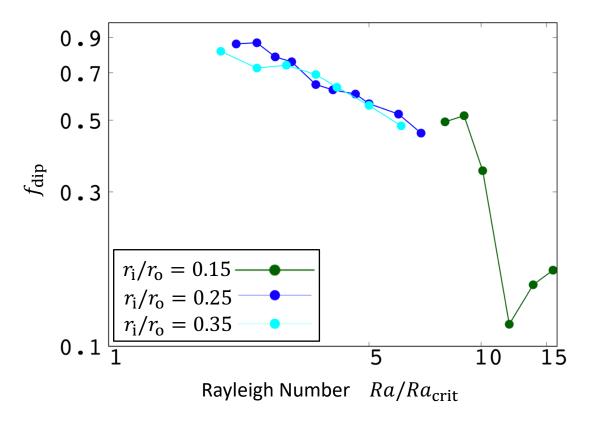
Lorentz force is strong for $E_{\rm mag} > E_{\rm kin}$.





- $E_{\rm mag}$ drops at $Ra/Ra_{\rm crit}=3.1$ and 3.6 in $r_{\rm i}/r_{\rm o}=0.25$.
- $E_{\rm mag}$ is comparable in $r_{\rm i}/r_{\rm o}=0.35$.

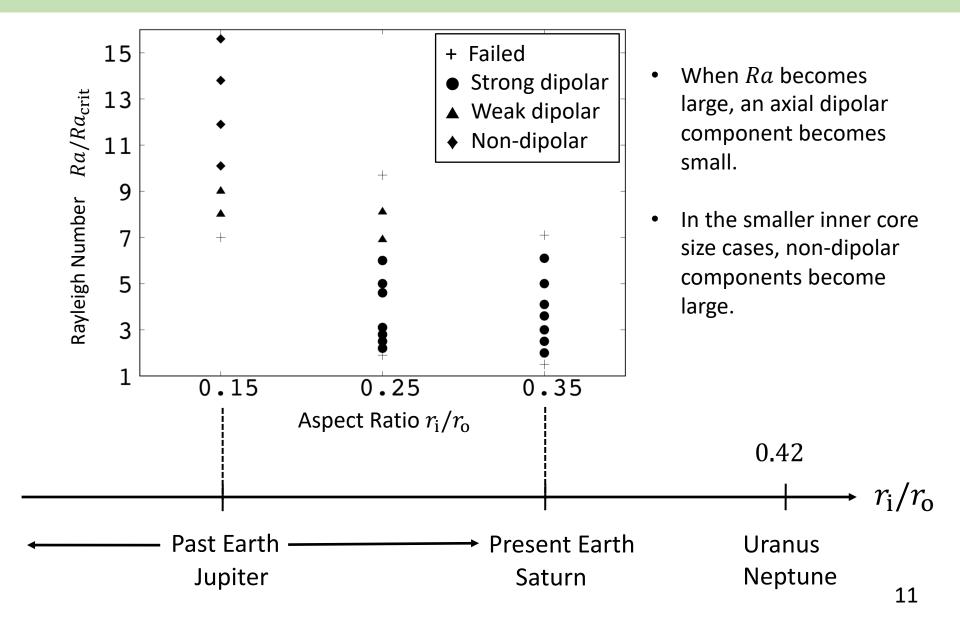
3.2 Dipolarity



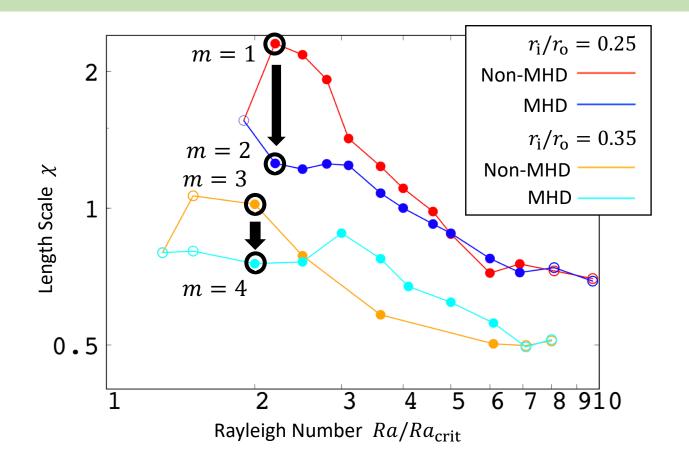
<u>Dipolarity</u> is an index which represents strength of an <u>axial dipole component</u>.

$$f_{\rm dip} = \left(\frac{E_{\rm mag}^{(l=1,m=0)}(r=r_{\rm o})}{\sum_{l=1}^{l_{\rm max}} \sum_{m=0}^{l} E_{\rm mag}^{(l,m)}(r=r_{\rm o})}\right)^{1/2} \qquad \left(\begin{array}{c} l: \text{Spherical harmonic degree} \\ m: \text{Spherical harmonic order} \end{array}\right)$$

3.3 Dynamo regime in various aspect ratios



4.1 Length scale of flow in azimuthal direction



$$\chi = \frac{\overline{\pi < u^2 >}}{\sum m < u_m^2 >} L = \left\{ \pi / \left(\sum m \frac{\overline{< u_m^2 >}}{< u^2 >} \right) \right\} L \quad \text{[cf. King and Buffett, 2013]}$$

(m: Spherical harmonic order, u: velosity, L: the outer core thickness)

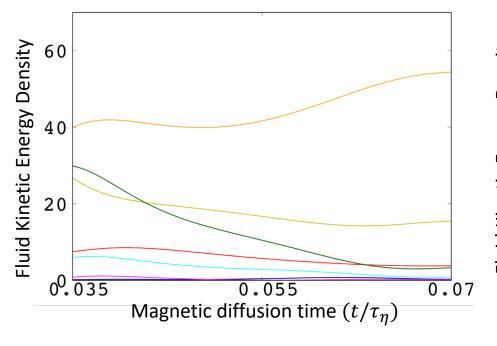
4.2 Growth in different modes

Simulation using linear terms (under background magnetic field and $\partial \mathbf{B}/\partial t = 0$)

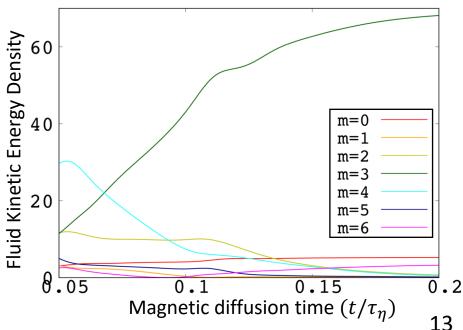
$$\frac{\partial \boldsymbol{u}}{\partial t} + (\nabla \times \boldsymbol{u}) \times \boldsymbol{u} = -\nabla \left(P + \frac{1}{2} \boldsymbol{u}^2 \right) - \nabla \times (\nabla \times \boldsymbol{u}) + \frac{Ra}{Pr} T \frac{\boldsymbol{r}}{r_0} - \frac{2}{E} \boldsymbol{e}_z \times \boldsymbol{u} + \frac{1}{Pm \cdot E} (\nabla \times \boldsymbol{B}) \times \boldsymbol{B}$$

$$\frac{\partial T}{\partial t} = -(\boldsymbol{u} \cdot \nabla)T + \frac{1}{Pr} \nabla^2 T \qquad \nabla \cdot \boldsymbol{u} = 0$$

$$r_{\rm i}/r_{\rm o} = 0.25$$
, $Ra/Ra_{\rm crit} = 2.2$



$$r_{\rm i}/r_{\rm o} = 0.35$$
, $Ra/Ra_{\rm crit} = 2.0$



4.3 Maximum growth mode

Maximum growth mode near dynamo onset is

- $m = 1 \text{ (no B)} \rightarrow m = 1 \text{ (with stable B)} \rightarrow m = 2 \text{ (with B) in } r_i/r_0 = 0.25$
- $m = 3 \text{ (no B)} \rightarrow m = 3 \text{ (with stable B)} \rightarrow m = 4 \text{ (with B) in } r_i/r_0 = 0.35$

Estimated growth rate p from the time history of E_{kin} which is set as $\exp(pt)$

m	0	1	2	3	4	5	6
$p (r_{\rm i}/r_{\rm o} = 0.25)$	-32.41	68.30	-84.09	-93.97	-40.93	-90.08	-448.8
$p (r_{\rm i}/r_{\rm o} = 0.35)$	7.62	-2.96	-24.91	27.03	-22.48	-27.47	13.47

5 Summary and future work

- In the smaller inner core size cases, non-dipolar components become large.
- Length scale of flow in MHD cases is smaller than that in non-MHD cases with small Ra.
- Maximum growth mode in MHD cases is larger than that in magnetoconvection model.

- ✓ Future works
- More simulations in some Ra in $r_{\rm i}/r_{\rm o}=0.25,0.35$
- → Investigation of maximum growth mode dependency on Ra and radius ratio and initial field
- Derivation of the maximum growth mode with/without the inner core from liner stability analysis... scale of $Ra_{\rm crit}$ on Ekman number and aspect ratio [Bissopp, 1958; Chandrasekhar, 1961; Roberts, 1968; Busse, 1970; Jones et al., 2000]