2020年2月17日

惑星圈研究会

水進化学 / ビッグピクチャーセッション

太陽系探査における水進化研究 (惑星超高層視点)

寺田直樹(東北大)

イントロ

 ・地球型惑星の水進化を理解する為には、 酸素(0)と<u>炭素(C)</u>の宇宙空間への流出 を明らかにすべし

MAVENによる火星大気流出観測

	H Jeans	O ion	O Dissoc Recomb	O sputtering	Total loss thru time	
Present-day loss rate from MVN (s ⁻¹)	1.6-11 x 10 ²⁶	5 x 10 ²⁴	5 x 10 ²⁵	3 x 10 ²⁴		
4.2 b.y. at present rate, H_2O	3.6-25.2 m	0.2 m	2.2 m	0.14 m		過去42億年間の流出重
4.2 b.y. at present rate, CO ₂		6 mbar	68 mbar	4 mbar		
CO ₂ loss, extrap. from L1992		630 mbar	113 mbar	7 bar	7.7 bar	
CO_2 loss, extrap. from C2013		525 mbar	227 mbar	42 mbar	0.79 bar	► CO₂からの流出を仮定
CO ₂ loss, extrap. from L2017			460 mbar		0.46 bar	
H ₂ O loss, extrap. from L1992		22.1 m	3.6 m	227 m	253 m	
H ₂ O loss, extrap. from C2013		18.8 m	2.9 m	1.4 m	23 m	► H ₂ Oからの流出を仮定
H ₂ O loss, extrap. from L2017			16 m	(16 m	
						「 外挿モテルにより~1桁の

MAVENチームとして大気流出率をまとめた論文 [Jakosky et al., 2018]

- ・現在の酸素(O)の流出率を測定。過去に外挿。
- Oの流出は、H₂Oから? CO₂から?

不確定性

MAVENが残した課題:

「O の流出は、H₂O から? CO₂ から?」 「結局、H₂O はどれだけ流出したの?」

解決策: O, C, H の流出量比を求めれば良い

*H₂脱ガス等は取り敢えずは無視

MAVENが残した課題:

「O の流出は、H₂O から? CO₂ から?」 「結局、H₂O はどれだけ流出したの?」

解決策: O, C, H の流出量比を求めれば良い

*H₂脱ガス等は取り敢えずは無視

O, C, H 流出の概要

- OとCの流出量(弁別機能で比が決定)
 - 太陽FUV/EUV放射、太陽風等に 依存
 - O, C の流出率、特に過去は? → Q1
- Hの流出量(下層からの輸送量で決定)

 -太陽可視放射(気温)、大気圧、 自転傾斜角、ダスト等に依存

 -長期的にみると、Hの流出量は従属的に決まる? → Q2

初期の「暴走温室→海消失シナリオ」は 起こりにくい?

Q1: O, C の流出率、特に過去は?

- MAVEN後の課題「O, C, Hの流出量比を求める」

 - 過去の探査では O, Hの観測が主
 - 理論予測によると、Cの流出率は、Oより1桁程度小さい
 - 歴史の初期では、Cの流出率は、Oより高くなるという予測

Q1: O, C の流出率、特に過去は?

- 約40億年前には、Slow Hydrodynamic Escape(熱的散逸)が 発生
- Cの流出率はOよりも高い
 - 1000万年でC消失、O, 大気に? → Yagi et al. [2日目夕]
 - 月付近まで大気膨張? \rightarrow K. Terada et al. [2日目夕] (フォボスの起源に制約)

- 酸素・炭素関連分子。但し、CO+とN₂+は質量が近接、 高質量分解能計測
- ・ 流出率のCME/CIR応答、EUV依存
 → 過去の流出率の理解へ [Seki et al.,本日午後]

9

Q2: 水素(H)の流出量は 従属的に決まる?

[Koyama et al., 2日目夕]

Futaana et al. [次講演]も関係

長期的にみると(>10⁴-10⁷年)、 O流出率: H流出率が 1:2 にな るように、H流出率が自己調整

酸素が失われた分しか、水は 流出しない(水素は独立に大量 に流出できない)

初期の「暴走温室→海消失シ ナリオ」は起こりにくい?

実証は、季節変化、11年変化、 将来の系外惑星大気観測で?

水流出・進化: 寺田の想像 ・火星や金星の水は、少量しか流出していない筈 (主に CO₂ が流出、H₂O は地下に埋蔵)。 過去に炭素が流出することで、水を守った? → 浅部地下氷探査 by MACO

同位体比計測

- ・大気進化の歴史を紐解く上で、同位体比は重要
- ・ MMXの高高度観測で先鞭をつけた後、超高層での 同位体比高度変化の観測および大気サンプルリ ターンを狙っていく
- 並行して、固体部との相互 作用による同位体比変化 の最新の理解も組み込ん でいく

まとめ

- これまでの大気散逸探査では、酸素(0)と水素(H)
 の流出に注目してきた
- ・水進化を理解する為には、酸素(O)と<u>炭素(C)</u>とその 関連分子の流出、そしてその歴史も明らかにすべし
 - O, C 流出のCME応答、EUV依存(MMX、MACO)
 - 熱圏→電離圏へのCO⁺, CO₂⁺等供給(MACO(?))
 - 初期の大気膨張(系外惑星紫外観測、タイタン探査(?))
 - H 流出の自己調整機能(火星・金星の季節~11年変化観 測、将来の系外惑星大気観測)
 - 浅部地下氷探査(MACO)
 - 同位体比(MMX、将来の大気観測・サンプルリターン)