Water & mantle evolution in Mars: a comparison with the Moon
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Recent exploration by landers has revealed the overall history of the Martian climate for the past 4
Gyrs: (1) Before the middle Noachian, the surface was rather arid, although there were hydrothermal
activities within the crust. (2) Then the surface became more temperate and an ocean developed in
the late Noachian to early Hesperian, about 3.7 Ga, but (3) became again colder and more arid since
the middle Hesperian. Water-supply to Mars by the Late Heavy Bombardment (LHB) has been
invoked to explain the temperate climate at around 3.7 Ga in the literature. ~Crater-chronology on the
Moon, however, suggests that the flux of meteorite was only moderately elevated at most during an
extended period of 3.8 to 4.2 Ga. Here, I suggest that the climate of Mars has closely followed its
history of outgassing by magmatism, based on a numerical model of a coupled magmatism-mantle
convection system.  The model suggests that the mantle of Mars that is assumed to have started hot
and wet has evolved in four stages: (a) An extensive magmatism caused by vigorous mantle convection
formed the crust and made the mantle compositionally stratified in the first few tens of million years.
The magmatism extracted about 80 % of the water that the mantle initially contained, although the
deep mantle retained some initial water. (b) The compositional stratification suppressed mantle
convection, and magmatism ceased for the next several hundred million years. (c) Then partially
molten plumes episodically ascended from the deep mantle to the surface to cause magmatism and
outgassing of the water retained in the deep mantle. (d) However, the magmatism waned, as the
magmatism itself extracts heat producing elements in the deep mantle. The dormant period of Stage
(b) may correspond to the rather arid period before the middle Noachian, while the temperate climate
at around 3.7 Ga may be a consequence of episodic outgassing of water caused by plume magmatism
in Stage (c). The model also predicts that the crust of Mars was formed by an extensive magmatism
caused by mantle convection and is different from the lunar crust that was formed by crystal

fractionation in the magma ocean.



The history of surface environment on Mars
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Water-supply by late heavy bombardment?

Figure 1 of Bottke, W.F., Norman, M.D. (2017) The late heavy bombardent, Ann. Rev. Earth Planet. Sci.,
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Figure 9 of “Werner, S.C. (2014)Moon, Mars, Mercury: Basin formation ages and implications
For the maximum surface age and the migration of gaseous planets, Earth Planet. Sci. Lett., 400,
54-65”
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late veneer prior to Borealis formation (> 4.4 Ga)?

A critical 1ssue for future lunar exploration

Highly siderophile elements in Mars No crustal recycling after Borealis
by late veneer

topography Moho-depth

Figure 8 of Walker, R.J. (2009) Highly siderophile elements in the Earth, Moon
and Mars: Update and implications for planetary accretion and differentiation
Chemie der Erde, 69, 101-125

(Andrew-Hanna et al., 2009)
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The crustal formation within

A direct consequence of the history of magmatism?
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Resurfacing by subsequent early magmatism?

. N. hem.+ Syrtis etc. (Head et al., 2002)

I Small volcanoes in s. hem. (Xiao et al. 2012)
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A numerical model of magmatism & mantle-convection with water-circulation
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Mantle-differentiation by magmatism in small planets (e.g. the Moon)
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Extrapolation to Mars

deeper & wetter mantle: larger d* /n (x Rayleigh number)
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the magmatism-mantle upwelling (MMU) feedback
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With the MMU feedback: Mars
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The four stages of the mantle evolution

(I) crustal formation & mantle layering within 20 Myr
(2) the dormant era

(3) episodic plume magmatism & degassing

(4) decline of magmatism & degassing
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crustal formation: the MO-crust — resurfacing by the MMU feedback
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Extrapolation from the Moon to the Earth
Why are vestiges of the MO so scarce in the Earth?

The Moon: by the MO-curst? Mars: by flood basalt?




The dormant era & the eplsodlc degassmg by plume magmatism
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The dormant era?

T & magma composition
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episodic magmatism = episodic temperate environment?
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The effects of water on mantle evolution

Wet: reference model
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Mantle evolution = surface environment

water supply by episodic plume magmatism?

the dormant era? decline of magmatism?
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