DSMC Simulation of Slow Hydrodynamic Escape From Terrestrial Planets
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Classes of thermal escape

Escape parameter : A=GMm/KTe,olc\o

m Hydrodynamic escape * Jeans escape
- A<~2 * A>~10
- Super-sonic upward flow Twd endmemherl * No upwarq bulk flow
- Energy-limited escape rate  hproximatiofs (hydrostatic atmosphere)
(a few orders of magnitude  Jeans escape rate (only the

greater than Jeans escape high energy tail of the Maxwell
rate [Volkov et al., 2011]) distribution escapes)

What happens between them ?
 Slow hydrodynamic escape
* A =2~1077

« Escape rate is between Jeans escape rate and
energy-limited escape rate.

However, fluid model has a serious problem in the upper boundary
condition. Transition from collisional to collisionless atmospheres is
difficult to solve with a fluid model.

Earth-like atmosphere (5 EUV) ‘

p \ Different escape effusion

~ velocities at the exobase

[Tian et al., 2013]

In this study, we investigate the slow hydrodynamic escape using a
DSMC model (full particle model) [K. Terada et al., 2016].

Slow hydrodynamic escape

is important to understand a highly extended
atmosphere subject to intense EUV radiation.

Proxima b, TRAPIST ¢, f, g
(in HZs around M-star)
would be in this regime

* How far is a planetary
atmosphere extended ?
* How is escape rate ?

Collisional-collisionless
transition

—® >
X Fluid model - 4

O Particle model

Previous fluid models have suggested that the Earth-like atmosphere
expands up to ~100,000 km for the 20 times the present solar EUV (3.9
Ga sun) in early days.

| Earth-like atmosphere (1 ~ 20 EY) |

~__— Exobase

Fluid model
——___ Radial expansion and
adiabatic cooling
(in the slow hydrodynamic
escape regime)

[Tian et al., 2008]

Model Description
Upper thermosphere-exosphere particle model using the direct
simulation Monte Carlo (DSMC) method [Terada et al., 2016]

The strategy of the model is to track the trajectory and status of the simulated
particles, and then the physical quantities are obtained through statistical averaging.

solar heating and IR cooling

F‘ « velocity update <:|.|

photochemical reactions inflow and outflow
* add and loss * add and loss

4 |

) cellicTon
* position and velocity update

* velocity update




MD simulation

Calculated orbit of O interacting with O
(collision energy = 0.03 eV)

numerical integration scheme

target particle

Verlet algorithm
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Why adiabatic cooling works

less efficiently ?

-
A molecule bouncing
between walls

(assume elastic collisions)

A molecule loses its kinetic
energy when a wall is
moving away

Photochemical reactions and EUV/UV fluxes
used in the model

Photochemical reactions

0, +hv—0+0
N, + hv — Ny* + 0
N, +hv—N*+N+e

Ny + hv — No*
O,+hv—>0*+0+e
O+hv—O0'+e
O+hv—0""+e+e
0+0+M—>0,+M
0+0H—0,+H
0 +HO, — 0, + OH
0+0—0,+hv

— The EUV flux model (Fo 7 = 150) [Richards et al., 1994]

Comparison with a fluid model

Fluid model
[Tian et al., 2008]
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1 and 5 EUV cases are consistent with a fluid model.
10 and 20 EUV cases deviate from a fluid model.

* Peak temperature is higher.

+ Adiabatic cooling associated with radial expansion works less efficiently.

Why adiabatic cooling works less efficiently ?

-
A molecule bouncing
between walls

(assume elastic collisions)

A molecule loses its kinetic
energy when a wall is
moving away

In a collisional atmosphere

(below exobase)

—
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p— — p—
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Adiabatic cooling when radially expanding

In a collisionless atmosphere
(around and above exobase)

No cooling when radially expanding
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Verification of adiabatic cooling around the exobase

Does the adiabatic cooling work less efficiently in
the upper thermosphere?

Test simulation conditions:
3 types of DSMC simulations of oxygen atmosphere without EUV heating

@ Normal DSMC simulation

@ 10 times the intermolecular collision frequency (More fluid-like behavior)

3 0.1 times the intermolecular collision frequency (More particle-like behavior)
At ground, number density = 6.5 X 104 [m-3], temperature = 20000 K

mean free path _ -
“scaleneigny ~ 001, escape parameter = 6.0)

Conclusions

When the Earth-like atmosphere is exposed to more than 10 times
stronger EUV radiation than the present-day Earth, the atmosphere is
in a slow hydrodynamic escape regime and 1 terrestrial ocean is lost
within 1 Gyr.

The exobase temperature is underestimated by a fluid model in a
slow hydrodynamic escape regime, because the adiabatic cooling
works inefficiently around the exobase.

The exobase density and the escape rate calculated by the normal
DSMC model are about 2 and 5 times larger than those calculated by
the fluid-like DSMC model, respectively.

Results of test simulation
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