惑星圈研究会2022 0208-PM4

ひさき衛星を用いた

長周期彗星の大気の化学特性の研究

鈴木 雄大¹、吉岡 和夫¹、益永 圭²、河北 秀世³、新中 善晴³、 村上 豪²、木村 智樹⁴、土屋 史紀⁵、山崎 敦²、吉川 一朗¹ ¹東京大学、²宇宙科学研究所、³京都産業大学、⁴東京理科大学、⁵東北大学

要旨-abstract

彗星は<u>地球の水の起源の候補天体</u>として注目されているほか、C/2013 A₁ (Siding Spring) やC/2021 A₁ (Leonard) 等の惑星近傍を通過する彗星の<u>惑星大気への物質供給</u>等の観点からも重要である。これまで、様々な彗星のガス 放出率の傾向や化学特性に関する研究が行われてきた。しかし、特に<u>長周期彗星の水放出率の日心距離依存性</u>の 傾向と軌道要素の関係性等は未だ分かっていない。

そこで本研究では、ひさき衛星の紫外線分光観測データを用いて、4つの長周期彗星について核からの水等の気 体分子の放出率を算出し、他の観測データと比較した。

まず、ひさき衛星のジオコロナの観測データを用いて、経年変化した<u>検出器の感度較正</u>を行った。続いて水素のLy-aの放射輝度の分布と自ら構築した彗星大気(コマ)のモデルの比較から、核からの水分子の放出量を見積もった。その結果、他の観測機器を用いた先行研究と整合的な水放出率を得た。特にC/2015 ER₆₁ (PanSTARRS) において、赤外線による水分子の観測(Saki et al., 2021)と紫外線による水素原子の観測(本研究)で整合的な結果が得られたことは注目に値する。

観測データの詳細な解釈のためには、<u>核付近での気体分子・原子同士の衝突や多重散乱に伴う減光の影響を考</u> <u>慮する必要</u>があると考えられる。今後はより詳細な彗星大気モデルを構築するとともに、核付近の大気の数密度 分布や速度分布を観測するために<u>Comet Interceptor探査機搭載のHydrogen Imagerの開発</u>を進める。

- + C/2013 $A_{\rm 1}$ (Siding Spring) approached Mars within 140,000 km
 - $\sim 2 \times 10^4$ kg of gas is estimated to impact Martian upper atmosphere, which is expected to be unobservable in the MAVEN/IUVS atmospheric data (Crismani et al., 2015. *GRL*.)
- How about C/2021 A_1 (Leonard)?

1. Introduction	2. Hisaki Satellite	3. Ly-α Data Recovery	4. Analysis	5. Summary
12 What is a	Comet?			

- Consists of nucleus, coma (thin atmosphere ejected from the nucleus), tail (dust, ion, Na)
- Divided into three types according to the orbital period
 - Short period comets:
 - originated from the Edgeworth-Kuiper-belt
 - Long period comets: originated from the Oort cloud
 - Some comets have never approached the Sun
 - = "dynamically new comets"
 - \bullet Intersteller comets: born outside our solar system
 - Only 2I/Borizov so far

「理科年表オフィシャルサイト」より引用 http://www.rikanenpyo.jp/kaisetsu/tenmon/tenmon_011.html

1.3. Previous Study – Observation of Comets' Coma

Telescope, Spacecraft	Wavelength	Observation Period	Objects	Major Achievements
Subaru telescope	IR, Vis	2000 –	21P/Gicobini-Zinner etc.	Discovery of icy grain in the coma, Estimation of CO ₂ /H ₂ O ratio
Akari satellite	IR	2006 - 2011	67P/Churyumov- Gerasimenko etc.	Evaluation of the production rate of a variety of molecules
SOFIA (Stratospheric Observatory for Infrared Astronomy)	IR	2018	46P/Wirtanen	Derivation of HDO/H ₂ O ratio
FUSE space telescope	UV	1999 - 2007	C/1999 T ₁ (McNaught-Hartley) etc.	Detection of CO emission line
SOHO satellite	UV	1995 -	C/2006 (SWAN) etc.	Estimation of H_2O production rate of many comets
Rosetta spacecraft	UV	2015	67P/Churyumov- Gerasimenko	Clarification of the coma's emission process in the vicinity of the nucleus

1. Introduction	2. Hisaki Satellite	3. Ly-α Data Recovery	4. Analysis	5. Summary
1.3. Previous	Study – Est	timation of H_2	O Production I	Rate

- Many comets' water production rate is estimated through the Ly-α observations of the coma using SOHO/SWAN (Combi et al., 2018. *Icarus*; Combi et al., 2019. *Icarus* etc.)
 - Long period comets (LPCs) have, generally, larger H_2O production rate than short period comets (SPCs)
 - Heliocentric distance dependance slope of H_2O production rate of LPCs is flatter than that of SPCs
 - H₂O production rate of LPCs tends to fluctuate in the post-perihelion phase

1. Introduction	2. Hisaki Satellite	3. Ly-α Data Recovery	4. Analysis	5. Summary
1.3 Previous	Study - Es	timation of Wa	ter Production	Rate

- Many comets' H₂O production rate is estimated through the Ly-α observations of the coma using SOHO/SWAN
 (Combi et al., 2018. *Icarus*; Combi et al., 2019. *Icarus* etc.)
 - No clear tendency due to comets' period and origin?
 - \bullet Much more comets should be observed
 - Observation opportunity is quite limited

1. Introduction	2. Hisaki Satellite	3. Ly-α Data Recovery	4. Analysis	5. Summary
1.4. Purpose of the Study				

Study on the tendency of the H_2O production rate and coma's composition due to comets' origin

In this study, we evaluate the H_2O production rate of four comets from the distribution of Ly- α emission obtained by the Hisaki satellite

1. Introduction	2. Hisaki Satellite	3. Ly-α Data Recovery	4. Analysis	5. Summary

2.1. Hisaki Satellite

- Space telescope
 - Launched in Sep. 2013 (still active!)
 - Orbiting the Earth at an altitude of \sim 1,000 km
- UV spectroscope: EXCEED
 - Wavelength: 52nm-148nm
 - Spatial distribution in the slit direction (1D) can be obtained
- Eight comets were observed (following page)
 - However, the sensitivity of the detector around Ly- α (121.6 nm) region decreases due to degradation

2.2. Comets Observed by Hisaki Satellite

Name	Orbital Period	Observation Period	Total Observation Time	Notes
67P/Churyumov-Gerasimenko	Short	2015/11/22 - 2015/11/30	~ 20 h	Emission lines derived from coma are not well detected
C/2013 US_{10} (Catalina)	Long	2015/11/22 - 2015/11/30	~ 39 h	Used in analysis
C/2013 X_1 (PanSTARRS)	Long	2016/05/30 - 2016/06/02	~ 13 h	Used in analysis
C/2015 ER_{61} (PanSTARRS)	Long	2017/06/02 - 2017/06/03	~ 14 h	Used in analysis
C/2015 V_2 (Johnson)	Long	2017/06/25	~ 8 h	Used in analysis
21P/Giacobini-Zinner	Short	2018/09/14	~ 8 h	No sky data
46P/Witanen	Short	2018/12/13 - 2018/12/25	~ 68 h	No sky data
$ m C/2021A_1$ (Leonard)	Long	2021/12/17 - 2021/12/21	~ 50 h	Under analysis

1. Introduction	2. Hisaki Satellite	3. Ly-α Data Recovery	4. Analysis	5. Summary

3. Estimation of the Sensitivity Using Sky Observation Data

- Conversion from count (obtained data) to radiance
 - Sensitivity of the detector around Ly- α (121.6 nm) region decreases due to degradation

1. Introduction	2. Hisaki Satellite	3. Ly-α Data Recovery	4. Analysis	5. Summary

3. Estimation of the Sensitivity Using Sky Observation Data

- Evaluate the sensitivity around Ly- α at the time of comet observation using Ly- α / Ly- β ratio of the sky observation data (assumed to be spatially uniform)
 - Assuming that the sensitivity in the vicinity of Ly- $\!\beta$ is constant
 - Ground calibration test data are used for the initial absolute sensitivity

ひさき衛星を用いた長周期彗星の大気の化学特性の研究(鈴木雄大)

1. Introduction

3. Estimation of the Sensitivity Using Sky Observation Data

- Sensitivity has a large non-uniformity
 - Hisaki often uses dumbbell-shaped slit (width varies depending on location) for observations of Jupiter and the Io-plasma torus.
 - More photons enter the detector through wide part than through narrow part
 - -> degradation has progressed faster

4. Analysis

4.1. Hydrogen Distribution in the Coma

- Subtract sky observation data from comet observation data
 - Remove the influence of geocorona
 - The local time of the sky observation data used is

the same as that of the observation data

4.1. Hydrogen Distribution in the Coma

- Vertical profile is made assuming the brightest part along the slit is the nucleus
- Ly-α radiance is devided by emission efficiency (g-factor)

and is converted to the apparent column density

• g-factor is assumed not to depend on the velocity of the comets and atoms

ひさき衛星を用いた長周期彗星の大気の化学特性の研究(鈴木雄大)

3. Ly-α Data Recovery

4. Analysis

4.2. Evaluation of the Water Production Rate

- Analytical 1-D vertical profile model (Kaneda et al., 1986, *Nature*)
 - Fitting parameter is H_2O production rate
 - Motion of H_2O and OH is not considered

- Numerical 1-D vertical profile model
 - Solving Boltzman's eq.
 - + $V_{\rm H2O},\,V_{\rm OH}$ is assumed to be 1.0 km/s

Collision of molecules or multiple scattering in the innner coma?

1. Introduction

5. Summary

4.3. Comparison of Comets' H₂O Production Rate

- Dependence of four comets' water production rate on the heliocentric distance ->
 - All the observations were held after comets passed the perihelion

1. Introduction

5. Summary

4.3. Comparison of Comets' H_2O Production Rate

due to short observation time

5. Summary

4.3. Comparison of Comets' Water Production Rate

- H_2O production rate of C/2015 ER₆₁ (PanSTARRS)
 - Results from Hisaki ($Q_{H2O} \sim 10^{29}$ /s) is consistent with that from IRTF/iSHELL (Saki et al., 2021. AnJ.)
 - Hisaki = UV observation of H atoms
 - IRTF = IR observation of H_2O molecules
 - -> Different methods show the consistent results!
- Short-period (~1 day) variation of each molecules were also detected by Hisaki.
 - Background (geocorona) variation? -> Future work

1. Introduction	2. Hisaki Satellite	3. Ly-α Data Recovery	4. Analysis	5. Summary
5.1. Summ	ary			

- We succeeded to estimate the H_2O production rate of four long period comets using Hisaki satellite's observation data
 - Sensitivity of the degraded detector are assumed using the Ly- α / Ly- β ratio of sky observation data
 - H_2O production rate of C/2013 US_{10} (Catalina) and C/2013 X_1 (PanSTARRS) was very consistent with the results of previous study (Combi et al., 2018. *Icarus*) using SOHO/SWAN
 - C/2015 ER₆₁ (PanSTARRS): H_2O production rate obtained by UV observations of Hisaki is consistent with that by IR observations of IRTF!

1. Introduction	2. Hisaki Satellite	3. Ly-α Data Recovery	4. Analysis	5. Summary
5.2. Future	e Work			

- Constructing model considering multi-scattering in the inner coma
- Detailed analysis of short-period variation of molecules in the coma
- Development of Hydroden Imager onboard Comet Interceptor spacecraft

